Pablo Alarcon
Royal Veterinary College
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pablo Alarcon.
Preventive Veterinary Medicine | 2013
Pablo Alarcon; Jonathan Rushton; Barbara Wieland
Post-weaning multi-systemic wasting syndrome (PMWS) is a multi-factorial disease with major economic implications for the pig industry worldwide. The present study aimed to assess the economic impact of PMWS and porcine circovirus type 2 (PCV2) subclinical infections (PCV2SI) for farrow-to-finish farms and to estimate the resulting cost to the English pig industry. A disease model was built to simulate the varying proportions of pigs in a batch that get infected with PCV2 and develop either PMWS, subclinical disease (reduce growth without evident clinical signs) or remain healthy (normal growth and no clinical signs), depending on the farm level PMWS severity. This PMWS severity measure accounted for the level of post-weaning mortality, PMWS morbidity and proportion of PCV2 infected pigs observed on farms. The model generated six outcomes: infected pigs with PMWS that die (PMWS-D); infected pigs with PMWS that recover (PMWS-R); subclinical pigs that die (Sub-D); subclinical pigs that reach slaughter age (Sub-S); healthy pigs sold (H-S); and pigs, infected or non-infected by PCV2, that die due to non-PCV2 related causes (nonPCV2-D). Enterprise and partial budget analyses were used to assess the deficit/profits and the extra costs/extra benefits of a change in disease status, respectively. Results from the economic analysis at pig level were combined with the disease models estimates of the proportion of different pigs produced at different severity scores to assess the cost of PMWS and subclinical disease at farm level, and these were then extrapolated to estimate costs at national level. The net profit for a H-S pig was £19.2. The mean loss for a PMWS-D pig was £84.1 (90% CI: 79.6–89.1), £24.5 (90% CI: 15.1–35.4) for a PMWS-R pig, £82.3 (90% CI: 78.1–87.5) for a Sub-D pig, and £8.1 (90% CI: 2.18–15.1) for a Sub-S pig. At farm level, the greatest proportion of negative economic impact was attributed to PCV2 subclinical pigs. The economic impact for the English pig industry for the year 2008, prior to the introduction of PCV2 vaccines, was estimated at £52.6 million per year (90% CI: 34.7–72.0), and approximately £88 million per year during the epidemic period. This was the first study to use empirical data to model the cost of PMWS/PCV2SI at different farm severity levels. Results from this model will be used to assess the efficiency of different control measures and to provide a decision support tool to farmers and policy makers.
BMC Veterinary Research | 2012
Martina Velasova; Pablo Alarcon; Susanna Williamson; Barbara Wieland
BackgroundThis study aimed to identify risk factors for active porcine reproductive and respiratory syndrome virus (PRRSV) infection at farm level and to assess the probability of an infected farm being detected through passive disease surveillance in England. Data were obtained from a cross-sectional study on 147 farrow-to-finish farms conducted from April 2008 – April 2009. The risk factors for active PRRSV infection were identified using multivariable logistic regression analysis. The surveillance system was evaluated using a stochastic scenario tree model.ResultsEvidence of PRRSV circulation was confirmed on 35.1% (95%CI: 26.8-43.4) of farms in the cross sectional study, with a higher proportion of infected farms in areas with high pig density (more than 15000 pigs within 10 km radius from the farm). Farms were more likely to have active PRRSV infection if they used the live virus vaccine-Porcilis PRRS (OR=7.5, 95%CI: 2.5-22.8), were located in high pig density areas (OR=2.9, 95%CI: 1.0-8.3) or had dead pigs collected (OR=5.6, 95%CI: 1.7-18.3). Farms that weaned pigs at 28 days of age or later had lower odds of being PRRSV positive compared to those weaning at 21-27 days (OR=0.2, 95%CI: 0.1-0.7). The probability of detecting an infected farm through passive surveillance for disease was low (mode=0.074, 5th and 95th percentiles: 0.067; 0.083 respectively). In particular farms which used live virus vaccine had lower probabilities for detection compared to those which did not.ConclusionsRisk factors identified highlight the importance of biosecurity measures for the incursion of PRRSV infection. The results further indicate that a combined approach of surveillance for infection and disease diagnosis is needed to assist effective control and/or elimination of PRRSV from the pig population.
PLOS Currents | 2011
Alexander Mastin; Pablo Alarcon; Dirk U. Pfeiffer; J. L. N. Wood; Susanna Williamson; Ian H. Brown; Barbara Wieland
Infection of pigs with influenza viruses is a cause of considerable economic loss for pig farmers as well as a potential human health concern - as evidenced by the identification of genetic material derived from swine-adapted influenza viruses in an novel strain of H1N1 influenza virus in 2009. A study was conducted investigating the prevalence of influenza virus infection in a selection of 143 English pig herds between April 2008 and April 2009, which found evidence of recent virus circulation in over half of these herds (n=75). Farms which were sampled in the Summer months were found to have lower odds of recent virus circulation, as were farms containing pigs kept in straw yards. Additionally, farms containing pigs kept indoors and farms containing high numbers of finisher pigs per water space were found to have higher odds of recent virus circulation. It is hoped that further studies will expand on these findings, and may allow targeting of surveillance for influenza viruses in the English pig population.
Preventive Veterinary Medicine | 2011
Pablo Alarcon; Martina Velasova; Dirk Werling; Katharina D.C. Stärk; Y.M. Chang; Amanda Nevel; Dirk U. Pfeiffer; Barbara Wieland
Post-weaning multi-systemic wasting syndrome (PMWS) causes major economic losses for the English pig industry and severity of clinical signs and economic impact vary considerably between affected farms. We present here a novel approach to quantify severity of PMWS based on morbidity and mortality data and presence of porcine circovirus type 2 (PCV2). In 2008-2009, 147 pig farms across England, non-vaccinating for PCV2, were enrolled in a cross-sectional study. Factor analysis was used to generate variables representing biologically meaningful aspects of variation among qualitative and quantitative morbidity variables. Together with other known variables linked to PMWS, the resulting factors were included in a principal component analysis (PCA) to derive an algorithm for PMWS severity. Factor analysis resulted in two factors: Morbidity Factor 1 (MF1) representing mainly weaner and grower morbidity, and Morbidity Factor 2 (MF2) which mainly reflects variation in finisher morbidity. This indicates that farms either had high morbidity mainly in weaners/growers or mainly in finishers. Subsequent PCA resulted in the extraction of one component representing variation in MF1, post-weaning mortality and percentage of PCV2 PCR positive animals. Component scores were normalised to a value range from 0 to 10 and farms classified into: non or slightly affected farms with a score <4, moderately affected farms with scores 4-6.5 and highly affected farms with a score >6.5. The identified farm level PMWS severities will be used to identify risk factors related to these, to assess the efficacy of PCV2 vaccination and investigating the economic impact of potential control measures.
Preventive Veterinary Medicine | 2011
Pablo Alarcon; Martina Velasova; Alexander Mastin; Amanda Nevel; Katharina D.C. Stärk; Barbara Wieland
A cross-sectional study involving 147 pig farms across England was conducted in 2008-2009. Farm severity of post-weaning multi-systemic wasting syndrome (PMWS) was estimated through the use of an algorithm that combined data on post-weaning mortality, PMWS morbidity and proportion of porcine circovirus type 2 PCR positive pigs. Farms were classified as non/slightly, moderately or highly affected by PMWS. Data on potential PMWS risk factors were collected through interviews, on-farm assessment and serological sampling. Risk factors were identified using multivariable ordinal logistic regression and multivariable linear regression. Factors associated with increased PMWS severity were rearing growers indoors (OR=23.7), requiring a higher number of veterinarian visits per year (OR=9.6), having poorly isolated hospital pens (OR=6.4), buying replacement boars (OR=4.8) and seropositivity to Mycoplasma hyopneumoniae (OR=4.29); factors associated with decreased PMWS severity were low stocking density for growers (OR=0.07), adjusting diets at least three times between weaning and 14 weeks of age (OR=0.12), and requiring visitors to be at least 2 days pig free (OR=0.14). This study provides evidence of the association between environmental and management factors and PMWS severity, and suggests that other pathogens may be important co-factors for the disease. In addition, this study highlights the potential efficacy of biosecurity measures in the reduction/prevention of within-farm PMWS severity.
Preventive Veterinary Medicine | 2013
Pablo Alarcon; Jonathan Rushton; H. Nathues; Barbara Wieland
The study assessed the economic efficiency of different strategies for the control of post-weaning multi-systemic wasting syndrome (PMWS) and porcine circovirus type 2 subclinical infection (PCV2SI), which have a major economic impact on the pig farming industry worldwide. The control strategies investigated consisted on the combination of up to 5 different control measures. The control measures considered were: (1) PCV2 vaccination of piglets (vac); (2) ensuring age adjusted diet for growers (diets); (3) reduction of stocking density (stock); (4) improvement of biosecurity measures (bios); and (5) total depopulation and repopulation of the farm for the elimination of other major pathogens (DPRP). A model was developed to simulate 5 years production of a pig farm with a 3-weekly batch system and with 100 sows. A PMWS/PCV2SI disease and economic model, based on PMWS severity scores, was linked to the production model in order to assess disease losses. This PMWS severity scores depends on the combination post-weaning mortality, PMWS morbidity in younger pigs and proportion of PCV2 infected pigs observed on farms. The economic analysis investigated eleven different farm scenarios, depending on the number of risk factors present before the intervention. For each strategy, an investment appraisal assessed the extra costs and benefits of reducing a given PMWS severity score to the average score of a slightly affected farm. The net present value obtained for each strategy was then multiplied by the corresponding probability of success to obtain an expected value. A stochastic simulation was performed to account for uncertainty and variability. For moderately affected farms PCV2 vaccination alone was the most cost-efficient strategy, but for highly affected farms it was either PCV2 vaccination alone or in combination with biosecurity measures, with the marginal profitability between ‘vac’ and ‘vac + bios’ being small. Other strategies such as ‘diets’, ‘vac + diets’ and ‘bios + diets’ were frequently identified as the second or third best strategy. The mean expected values of the best strategy for a moderately and a highly affected farm were £14,739 and £57,648 after 5 years, respectively. This is the first study to compare economic efficiency of control strategies for PMWS and PCV2SI. The results demonstrate the economic value of PCV2 vaccination, and highlight that on highly affected farms biosecurity measures are required to achieve optimal profitability. The model developed has potential as a farm-level decision support tool for the control of this economically important syndrome.
Veterinary Journal | 2013
Martina Velasova; Pablo Alarcon; Dirk Werling; Amanda Nevel; Barbara Wieland
Changes in the severity of post-weaning multisystemic wasting syndrome (PMWS) and the effect of vaccination against porcine circovirus type 2 (PCV2) on the severity of PMWS and the prevalence of PCV2 were assessed on 50 English pig farms from 2008 to 2010. PMWS severity on farms before and after PCV2 vaccination was estimated by combining data on post-weaning mortality, morbidity and proportion of pigs positive for PCV2 by PCR. At the first visit (before vaccination), all 50 farms were seropositive for PCV2 and 90% of farms were positive for PCV2 by PCR. At the second visit (331-539 days after the first visit), all 50 farms remained seropositive for PCV2 and 28/50 (56%) were positive for PCV2 by PCR, representing 16/36 (44.4%) farms that vaccinated against PCV2 and 12/14 (85.7%) farms that did not. There was a reduction of ~50% in mean PMWS score on farms that vaccinated and were initially moderately or highly PMWS affected. Vaccination against PCV2 reduced the severity of PMWS, even though PCV2 persisted on 44% of farms after vaccination.
Agricultural Systems | 2017
Pablo Alarcon; Eric M. Fèvre; Maurice K. Murungi; P. Muinde; James M. Akoko; Paula Dominguez-Salas; Stella Kiambi; Sohel J. Ahmed; Barbara Häsler; Jonathan Rushton
Nairobi is a large rapidly-growing city whose demand for beef, mutton and goat products is expected to double by 2030. The study aimed to map the Nairobi beef, sheep and goat systems structure and flows to identify deficiencies and vulnerabilities to shocks. Cross-sectional data were collected through focus group discussions and interviews with people operating in Nairobi ruminant livestock and meat markets and in the large processing companies. Qualitative and quantitative data were obtained about the type of people, animals, products and value adding activities in the chains, and their structural, spatial and temporal interactions. Mapping analysis was done in three different dimensions: people and product profiling (interactions of people and products), geographical (routes of animals and products) and temporal mapping (seasonal fluctuations). The results obtained were used to identify structural deficiencies and vulnerability factors in the system. Results for the beef food system showed that 44–55% of the citys beef supply flows through the ‘local terminal markets’, but that 54–64% of total supply is controlled by one ‘meat market’. Numerous informal chains were identified, with independent livestock and meat traders playing a pivotal role in the functionality of these systems, and where most activities are conducted with inefficient quality control and under scarce and inadequate infrastructure and organisation, generating wastage and potential food safety risks in low quality meat products. Geographical and temporal analysis showed the critical areas influencing the different markets, with larger markets increasing their market share in the low season. Large processing companies, partly integrated, operate with high quality infrastructures, but with up to 60% of their beef supply depending on similar routes as the informal markets. Only these companies were involved in value addition activities, reaching high-end markets, but also dominating the distribution of popular products, such as beef sausages, to middle and low-end market. For the small ruminant food system, 73% of the low season supply flows through a single large informal market, Kiamaiko, located in an urban informal settlement. No grading is done for these animals or the meat produced. Large companies were reported to export up to 90% of their products. Lack of traceability and control of animal production was a common feature in all chains. The mapping presented provides a framework for policy makers and institutions to understand and design improvement plans for the Nairobi ruminant food system. The structural deficiencies and vulnerabilities identified here indicate the areas of intervention needed.
Preventive Veterinary Medicine | 2017
M. Carron; Pablo Alarcon; M. Karani; P. Muinde; James M. Akoko; Joshua Orungo Onono; Eric M. Fèvre; Barbara Haesler; Jonathan Rushton
Livestock food systems play key subsistence and income generation roles in low to middle income countries and are important networks for zoonotic disease transmission. The aim of this study was to use a value chain framework to characterize the broiler chicken meat system of Nairobi, its governance and sanitary risks. A total of 4 focus groups and 8 key informant interviews were used to collect cross-sectional data from: small-scale broiler farmers in selected Nairobi peri-urban and informal settlement areas; medium to large integrated broiler production companies; traders and meat inspectors in live chicken and chicken meat markets in Nairobi. Qualitative data were collected on types of people operating in the system, their interactions, sanitary measures in place, sourcing and selling of broiler chickens and products. Framework analysis was used to identify governance themes and risky sanitary practices present in the system. One large company was identified to supply 60% of Nairobi’s day-old chicks to farmers, mainly through agrovet shops. Broiler meat products from integrated companies were sold in high-end retailers whereas their low value products were channelled through independent traders to consumers in informal settlements. Peri-urban small-scale farmers reported to slaughter the broilers on the farm and to sell carcasses to retailers (hotels and butcheries mainly) through brokers (80%), while farmers in the informal settlement reported to sell their broilers live to retailers (butcheries, hotels and hawkers mainly) directly. Broiler heads and legs were sold in informal settlements via roadside vendors. Sanitary risks identified were related to lack of biosecurity, cold chain and access to water, poor hygiene practices, lack of inspection at farm slaughter and limited health inspection in markets. Large companies dominated the governance of the broiler system through the control of day-old chick production. Overall government control was described as relatively weak leading to minimal official regulatory enforcement. Large companies and brokers were identified as dominant groups in market information dissemination and price setting. Lack of farmer association was found to be system-wide and to limit market access. Other system barriers included lack of space and expertise, leading to poor infrastructure and limited ability to implement effective hygienic measures. This study highlights significant structural differences between different broiler chains and inequalities in product quality and market access across the system. It provides a foundation for food safety assessments, disease control programmes and informs policy-making for the inclusive growth of this fast-evolving sector.
BMC Veterinary Research | 2014
Didier Raboisson; Agnès Waret-Szkuta; Jonathan Rushton; Barbara Häsler; Pablo Alarcon
BackgroundSchmallenberg virus (SBV) was first detected in November 2011 in Germany and then rapidly spread throughout Europe. In beef suckler farms, clinical signs are mainly associated with reproductive disorders, particularly in late gestation, and intransient and non-specific symptoms, namely diarrhea, inappetence and fever. The objectives of this study were to develop models that simulate the production of different beef suckler systems in the United Kingdom (UK) and France and to use these models to estimate, through partial budget analyses, the farm-level economic cost of SBV under two disease impact scenarios, namely high and low impact. The probability for a farm to be in the high or low scenario depends, among other, on the high, low or nil vectorial activity for a given period and location and on the period(s) of sensitivity of the animals to the disease.ResultsUnder the high impact scenario, the estimated SBV impact ranged from 26€ to 43€ per cow per year in France and from 29€ to 36€ per cow per year in the UK. It was approximately half of this amount in the low impact scenario. These financial impacts represent 5 to 16% of the gross margin, depending on the country, impact scenario and livestock system considered. Most of the SBV impact originates from the costs of the steers and heifers not produced. Differences identified between the systems studied mainly stem from differences among the value of the steers or heifers sold: SBV impact is higher for British autumn calving systems compared to spring calving, and for French farms with calving and fattening activities compared to farms with only a single, annual calving activity.ConclusionsThis study shows the usefulness of integrated production and economic models to accurately evaluate the costs of diseases and understand which factors have major impacts in the different systems. The models stand as a useful basis for animal health professionals when considering alternative disease control measures. They are also a farm accounting tool for estimating disease impact on differing production practices, which creates the necessary basis for cost-effectiveness analysis of intervention strategies, such as vaccination.