Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pablo Avalos is active.

Publication


Featured researches published by Pablo Avalos.


American Journal of Respiratory and Critical Care Medicine | 2013

Intermittent Hypoxia and Stem Cell Implants Preserve Breathing Capacity in a Rodent Model of Amyotrophic Lateral Sclerosis

Nicole L. Nichols; Genevieve Gowing; Irawan Satriotomo; Lisa J. Nashold; Erica A. Dale; Masatoshi Suzuki; Pablo Avalos; Patrick Mulcrone; Jacalyn McHugh; Clive N. Svendsen; Gordon S. Mitchell

RATIONALE Amyotrophic lateral sclerosis (ALS) is a devastating motor neuron disease causing paralysis and death from respiratory failure. Strategies to preserve and/or restore respiratory function are critical for successful treatment. Although breathing capacity is maintained until late in disease progression in rodent models of familial ALS (SOD1(G93A) rats and mice), reduced numbers of phrenic motor neurons and decreased phrenic nerve activity are observed. Decreased phrenic motor output suggests imminent respiratory failure. OBJECTIVES To preserve or restore phrenic nerve activity in SOD1(G93A) rats at disease end stage. METHODS SOD1(G93A) rats were injected with human neural progenitor cells (hNPCs) bracketing the phrenic motor nucleus before disease onset, or exposed to acute intermittent hypoxia (AIH) at disease end stage. MEASUREMENTS AND MAIN RESULTS The capacity to generate phrenic motor output in anesthetized rats at disease end stage was: (1) transiently restored by a single presentation of AIH; and (2) preserved ipsilateral to hNPC transplants made before disease onset. hNPC transplants improved ipsilateral phrenic motor neuron survival. CONCLUSIONS AIH-induced respiratory plasticity and stem cell therapy have complementary translational potential to treat breathing deficits in patients with ALS.


The Journal of Neuroscience | 2014

Delayed disease onset and extended survival in the SOD1G93A rat model of amyotrophic lateral sclerosis after suppression of mutant SOD1 in the motor cortex.

Gretchen M. Thomsen; Genevieve Gowing; Jessica Latter; Maximus Chen; Jean-Philippe Vit; Kevin Staggenborg; Pablo Avalos; Mor Alkaslasi; Laura Ferraiuolo; Shibi Likhite; Brian K. Kaspar; Clive N. Svendsen

Sporadic amyotrophic lateral sclerosis (ALS) is a fatal disease with unknown etiology, characterized by a progressive loss of motor neurons leading to paralysis and death typically within 3–5 years of onset. Recently, there has been remarkable progress in understanding inherited forms of ALS in which well defined mutations are known to cause the disease. Rodent models in which the superoxide dismutase-1 (SOD1) mutation is overexpressed recapitulate hallmark signs of ALS in patients. Early anatomical changes in mouse models of fALS are seen in the neuromuscular junctions (NMJs) and lower motor neurons, and selective reduction of toxic mutant SOD1 in the spinal cord and muscle of these models has beneficial effects. Therefore, much of ALS research has focused on spinal motor neuron and NMJ aspects of the disease. Here we show that, in the SOD1G93A rat model of ALS, spinal motor neuron loss occurs presymptomatically and before degeneration of ventral root axons and denervation of NMJs. Although overt cell death of corticospinal motor neurons does not occur until disease endpoint, we wanted to establish whether the upper motor neuron might still play a critical role in disease progression. Surprisingly, the knockdown of mutant SOD1 in only the motor cortex of presymptomatic SOD1G93A rats through targeted delivery of AAV9–SOD1–shRNA resulted in a significant delay of disease onset, expansion of lifespan, enhanced survival of spinal motor neurons, and maintenance of NMJs. This datum suggests an early dysfunction and thus an important role of the upper motor neuron in this animal model of ALS and perhaps patients with the disease.


The Journal of Comparative Neurology | 2014

Human induced pluripotent stem cells are a novel source of neural progenitor cells (iNPCs) that migrate and integrate in the rodent spinal cord

Dhruv Sareen; Genevieve Gowing; Anais Sahabian; Kevin Staggenborg; Renée Paradis; Pablo Avalos; Jessica Latter; Loren Ornelas; Leslie Garcia; Clive N. Svendsen

Transplantation of human neural progenitor cells (NPCs) into the brain or spinal cord to replace lost cells, modulate the injury environment, or create a permissive milieu to protect and regenerate host neurons is a promising therapeutic strategy for neurological diseases. Deriving NPCs from human fetal tissue is feasible, although problematic issues include limited sources and ethical concerns. Here we describe a new and abundant source of NPCs derived from human induced pluripotent stem cells (iPSCs). A novel chopping technique was used to transform adherent iPSCs into free‐floating spheres that were easy to maintain and were expandable (EZ spheres) (Ebert et al. [2013] Stem Cell Res 10:417–427). These EZ spheres could be differentiated towards NPC spheres with a spinal cord phenotype using a combination of all‐trans retinoic acid (RA) and epidermal growth factor (EGF) and fibroblast growth factor‐2 (FGF‐2) mitogens. Suspension cultures of NPCs derived from human iPSCs or fetal tissue have similar characteristics, although they were not similar when grown as adherent cells. In addition, iPSC‐derived NPCs (iNPCs) survived grafting into the spinal cord of athymic nude rats with no signs of overgrowth and with a very similar profile to human fetal‐derived NPCs (fNPCs). These results suggest that human iNPCs behave like fNPCs and could thus be a valuable alternative for cellular regenerative therapies of neurological diseases. J. Comp. Neurol. 522:2707–2728, 2014.


Advances in orthopedics | 2012

Stem Cell Therapy for Degenerative Disc Disease

Doniel Drazin; Jack Rosner; Pablo Avalos; Frank L. Acosta

Low back pain is widely recognized as one of the most prevalent pathologies in the developed world. In the United States, low back pain is the most common health problem for adults under the age of 50, resulting in significant societal and personal costs. While the causes of low back pain are myriad, it has been significantly associated with intervertebral disc (IVD) degeneration. Current first-line therapies for IVD degeneration such as physical therapy and spinal fusion address symptoms, but do not treat the underlying degeneration. The use of tissue engineering to treat IVD degeneration provides an opportunity to correct the pathological process. Novel techniques are currently being investigated and have shown mixed results. One major avenue of investigation has been stem cell injections. Mesenchymal stem cells (MSCs) have shown promise in small animal models, but results in larger vertebrates have been mixed.


Neuroreport | 2014

Glial cell line-derived neurotrophic factor-secreting human neural progenitors show long-term survival, maturation into astrocytes, and no tumor formation following transplantation into the spinal cord of immunocompromised rats.

Genevieve Gowing; Brandon Shelley; Kevin Staggenborg; Amanda M. Hurley; Pablo Avalos; Jesse Victoroff; Jessica Latter; Leslie Garcia; Clive N. Svendsen

Human neural progenitor cells (hNPCs) derived from the fetal cortex can be expanded in vitro and genetically modified through lentiviral transduction to secrete growth factors shown to have a neurotrophic effect in animal models of neurological disease. hNPCs survive and mature following transplantation into the central nervous system of large and small animals including the rat model of amyotrophic lateral sclerosis. Here we report that hNPCs engineered to express glial cell line-derived neurotrophic factor (GDNF) survive long-term (7.5 months) following transplantation into the spinal cord of athymic nude rats and continue to secrete GDNF. Cell proliferation declined while the number of astrocytes increased, suggesting final maturation of the cells over time in vivo. Together these data show that GDNF-producing hNPCs may be useful as a source of cells for long-term delivery of both astrocytes and GDNF to the damaged central nervous system.


Stem Cells International | 2012

The Potential for Cellular Therapy Combined with Growth Factors in Spinal Cord Injury

Jack Rosner; Pablo Avalos; Frank L. Acosta; John C. Liu; Doniel Drazin

Any traumatic spinal cord injury (SCI) may cause symptoms ranging from pain to complete loss of motor and sensory functions below the level of the injury. Currently, there are over 2 million SCI patients worldwide. The cost of their necessary continuing care creates a burden for the patient, their families, and society. Presently, few SCI treatments are available and none have facilitated neural regeneration and/or significant functional improvement. Research is being conducted in the following areas: pathophysiology, cellular therapies (Schwann cells, embryonic stem cells, induced pluripotent stem cells, mesenchymal stem cells, olfactory ensheathing cells), growth factors (BDNF), inhibitory molecules (NG2, myelin protein), and combination therapies (cell grafts and neurotrophins, cotransplantation). Results are often limited because of the inhibitory environment created following the injury and the limited regenerative potential of the central nervous system. Therapies that show promise in small animal models may not transfer to nonhuman primates and humans. None of the research has resulted in remarkable improvement, but many areas show promise. Studies have suggested that a combination of therapies may enhance results and may be more effective than a single therapy. This paper reviews and discusses the most promising new SCI research including combination therapies.


Science Translational Medicine | 2017

In situ bone tissue engineering via ultrasound-mediated gene delivery to endogenous progenitor cells in mini-pigs.

Maxim Bez; Dmitriy Sheyn; Wafa Tawackoli; Pablo Avalos; Galina Shapiro; Joseph C. Giaconi; Xiaoyu Da; Shiran Ben David; Jayne Gavrity; Hani A. Awad; Hyun W. Bae; Eric J. Ley; Thomas J. Kremen; Zulma Gazit; Katherine W. Ferrara; Gadi Pelled; Dan Gazit

Microbubble-enhanced, ultrasound-mediated BMP-6 gene delivery to endogenous progenitor cells induces rapid and efficient repair of critical-sized, nonunion bone fractures in mini-pigs. Bubbles and BMP-6 for bone repair Treatments for bone nonunions (fractures that fail to heal) include surgery and bone grafting. As an alternative to viral gene delivery, Bez et al. developed a two-step therapy. First, endogenous mesenchymal stem/progenitor cells were recruited to the bone nonunion by implanting a collagen sponge in the defect site. Two weeks later, bone morphogenetic protein-6 (BMP-6) plasmid DNA and microbubbles were injected into nonunions, and ultrasound was applied to oscillate the microbubbles, which helped the recruited progenitors take up the BMP-6. This therapy led to transient BMP-6 secretion, bone regeneration, and fracture healing over 6 weeks in critical-sized tibial nonunions in mini-pigs. More than 2 million bone-grafting procedures are performed each year using autografts or allografts. However, both options carry disadvantages, and there remains a clear medical need for the development of new therapies for massive bone loss and fracture nonunions. We hypothesized that localized ultrasound-mediated, microbubble-enhanced therapeutic gene delivery to endogenous stem cells would induce efficient bone regeneration and fracture repair. To test this hypothesis, we surgically created a critical-sized bone fracture in the tibiae of Yucatán mini-pigs, a clinically relevant large animal model. A collagen scaffold was implanted in the fracture to facilitate recruitment of endogenous mesenchymal stem/progenitor cells (MSCs) into the fracture site. Two weeks later, transcutaneous ultrasound-mediated reporter gene delivery successfully transfected 40% of cells at the fracture site, and flow cytometry showed that 80% of the transfected cells expressed MSC markers. Human bone morphogenetic protein-6 (BMP-6) plasmid DNA was delivered using ultrasound in the same animal model, leading to transient expression and secretion of BMP-6 localized to the fracture area. Micro–computed tomography and biomechanical analyses showed that ultrasound-mediated BMP-6 gene delivery led to complete radiographic and functional fracture healing in all animals 6 weeks after treatment, whereas nonunion was evident in control animals. Collectively, these findings demonstrate that ultrasound-mediated gene delivery to endogenous mesenchymal progenitor cells can effectively treat nonhealing bone fractures in large animals, thereby addressing a major orthopedic unmet need and offering new possibilities for clinical translation.


Molecular Therapy | 2016

PTH Induces Systemically Administered Mesenchymal Stem Cells to Migrate to and Regenerate Spine Injuries

Dmitriy Sheyn; Galina Shapiro; Wafa Tawackoli; Douk Soo Jun; Youngdo Koh; Kyu Bok Kang; Susan Su; Xiaoyu Da; Shiran Ben-David; Maxim Bez; Eran Yalon; Ben Antebi; Pablo Avalos; Tomer Stern; Elazar Zelzer; Edward M. Schwarz; Zulma Gazit; Gadi Pelled; Hyun M Bae; Dan Gazit

Osteoporosis affects more than 200 million people worldwide leading to more than 2 million fractures in the United States alone. Unfortunately, surgical treatment is limited in patients with low bone mass. Parathyroid hormone (PTH) was shown to induce fracture repair in animals by activating mesenchymal stem cells (MSCs). However, it would be less effective in patients with fewer and/or dysfunctional MSCs due to aging and comorbidities. To address this, we evaluated the efficacy of combination i.v. MSC and PTH therapy versus monotherapy and untreated controls, in a rat model of osteoporotic vertebral bone defects. The results demonstrated that combination therapy significantly increased new bone formation versus monotherapies and no treatment by 2 weeks (P < 0.05). Mechanistically, we found that PTH significantly enhanced MSC migration to the lumbar region, where the MSCs differentiated into bone-forming cells. Finally, we used allogeneic porcine MSCs and observed similar findings in a clinically relevant minipig model of vertebral defects. Collectively, these results demonstrate that in addition to its anabolic effects, PTH functions as an adjuvant to i.v. MSC therapy by enhancing migration to heal bone loss. This systemic approach could be attractive for various fragility fractures, especially using allogeneic cells that do not require invasive tissue harvest.Osteoporosis affects more than 200 million people worldwide leading to more than 2 million fractures in the United States alone. Unfortunately, surgical treatment is limited in patients with low bone mass. Parathyroid hormone (PTH) was shown to induce fracture repair in animals by activating mesenchymal stem cells (MSCs). However, it would be less effective in patients with fewer and/or dysfunctional MSCs due to aging and comorbidities. To address this, we evaluated the efficacy of combination i.v. MSC and PTH therapy versus monotherapy and untreated controls, in a rat model of osteoporotic vertebral bone defects. The results demonstrated that combination therapy significantly increased new bone formation versus monotherapies and no treatment by 2 weeks (P < 0.05). Mechanistically, we found that PTH significantly enhanced MSC migration to the lumbar region, where the MSCs differentiated into bone-forming cells. Finally, we used allogeneic porcine MSCs and observed similar findings in a clinically relevant minipig model of vertebral defects. Collectively, these results demonstrate that in addition to its anabolic effects, PTH functions as an adjuvant to i.v. MSC therapy by enhancing migration to heal bone loss. This systemic approach could be attractive for various fragility fractures, especially using allogeneic cells that do not require invasive tissue harvest.


Experimental Neurology | 2016

Human neural progenitors differentiate into astrocytes and protect motor neurons in aging rats.

Melanie M. Das; Pablo Avalos; Patrick Suezaki; Marlesa Godoy; Leslie Garcia; Christine D. Chang; Jean-Philippe Vit; Brandon Shelley; Genevieve Gowing; Clive N. Svendsen

Age-associated health decline presents a significant challenge to healthcare, although there are few animal models that can be used to test potential treatments. Here, we show that there is a significant reduction in both spinal cord motor neurons and motor function over time in the aging rat. One explanation for this motor neuron loss could be reduced support from surrounding aging astrocytes. Indeed, we have previously shown using in vitro models that aging rat astrocytes are less supportive to rat motor neuron function and survival over time. Here, we test whether rejuvenating the astrocyte niche can improve the survival of motor neurons in an aging spinal cord. We transplanted fetal-derived human neural progenitor cells (hNPCs) into the aging rat spinal cord and found that the cells survive and differentiate into astrocytes with a much higher efficiency than when transplanted into younger animals, suggesting that the aging environment stimulates astrocyte maturation. Importantly, the engrafted astrocytes were able to protect against motor neuron loss associated with aging, although this did not result in an increase in motor function based on behavioral assays. We also transplanted hNPCs genetically modified to secrete glial cell line-derived neurotrophic factor (GDNF) into the aging rat spinal cord, as this combination of cell and protein delivery can protect motor neurons in animal models of ALS. During aging, GDNF-expressing hNPCs protected motor neurons, though to the same extent as hNPCs alone, and again had no effect on motor function. We conclude that hNPCs can survive well in the aging spinal cord, protect motor neurons and mature faster into astrocytes when compared to transplantation into the young spinal cord. While there was no functional improvement, there were no functional deficits either, further supporting a good safety profile of hNPC transplantation even into the older patient population.


Neurosurgery | 2015

Preclinical Validation of Multilevel Intraparenchymal Stem Cell Therapy in the Porcine Spinal Cord.

Juanmarco Gutierrez; Jason J. Lamanna; Natalia Grin; Carl V. Hurtig; Joseph H. Miller; Jonathan Riley; Lindsey Urquia; Pablo Avalos; Clive N. Svendsen; Thais Federici; Nicholas M. Boulis

BACKGROUND Although multiple clinical trials are currently testing different stem cell therapies as treatment alternatives for many neurodegenerative diseases and spinal cord injury, the optimal injection parameters have not yet been defined. OBJECTIVE To test the spinal cords tolerance to increasing volumes and numbers of stem cell injections in the pig. METHODS Twenty-seven female Göttingen minipigs received human neural progenitor cell injections using a stereotactic platform device. Cell transplantation in groups 1 to 5 (5-7 pigs in each) was undertaken with the intent of assessing the safety of an injection volume escalation (10, 25, and 50 µL) and an injection number escalation (20, 30, and 40 injections). Motor function and general morbidity were assessed for 21 days. Full necropsy was performed; spinal cords were analyzed for graft survival and microscopic tissue damage. RESULTS No mortality or permanent surgical complications were observed during the 21-day study period. All animals returned to preoperative baseline within 14 days, showing complete motor function recovery. The histological analysis showed that there was no significant decrease in neuronal density between groups, and cell engraftment ranged from 12% to 31% depending on the injection paradigm. However, tissue damage was identified when injecting large volumes into the spinal cord (50 μL). CONCLUSION This series supports the functional safety of various injection volumes and numbers in the spinal cord and gives critical insight into important safety thresholds. These results are relevant to all translational programs delivering cell therapeutics to the spinal cord.

Collaboration


Dive into the Pablo Avalos's collaboration.

Top Co-Authors

Avatar

Clive N. Svendsen

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Genevieve Gowing

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Dan Gazit

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Dmitriy Sheyn

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Doniel Drazin

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jessica Latter

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Kevin Staggenborg

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Leslie Garcia

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Wafa Tawackoli

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Zulma Gazit

Cedars-Sinai Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge