Pablo B. Martínez de Morentin
University of Santiago de Compostela
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pablo B. Martínez de Morentin.
Nature Medicine | 2010
Miguel López; Luis M. Varela; María J. Vázquez; Sergio Rodriguez-Cuenca; Cr Gonzalez; Vidya Velagapudi; Donald A. Morgan; Erik Schoenmakers; Khristofor Agassandian; Ricardo Lage; Pablo B. Martínez de Morentin; Sulay Tovar; Ruben Nogueiras; David Carling; Christopher J. Lelliott; Rosalía Gallego; Matej Orešič; Krishna Chatterjee; Asish K. Saha; Kamal Rahmouni; Carlos Dieguez; Antonio Vidal-Puig
Thyroid hormones have widespread cellular effects; however it is unclear whether their effects on the central nervous system (CNS) contribute to global energy balance. Here we demonstrate that either whole-body hyperthyroidism or central administration of triiodothyronine (T3) decreases the activity of hypothalamic AMP-activated protein kinase (AMPK), increases sympathetic nervous system (SNS) activity and upregulates thermogenic markers in brown adipose tissue (BAT). Inhibition of the lipogenic pathway in the ventromedial nucleus of the hypothalamus (VMH) prevents CNS-mediated activation of BAT by thyroid hormone and reverses the weight loss associated with hyperthyroidism. Similarly, inhibition of thyroid hormone receptors in the VMH reverses the weight loss associated with hyperthyroidism. This regulatory mechanism depends on AMPK inactivation, as genetic inhibition of this enzyme in the VMH of euthyroid rats induces feeding-independent weight loss and increases expression of thermogenic markers in BAT. These effects are reversed by pharmacological blockade of the SNS. Thus, thyroid hormone–induced modulation of AMPK activity and lipid metabolism in the hypothalamus is a major regulator of whole-body energy homeostasis.
Cell Metabolism | 2014
Pablo B. Martínez de Morentin; Ismael González-García; Luís Martins; Ricardo Lage; Diana Fernández-Mallo; Noelia Martínez-Sánchez; Francisco Ruíz-Pino; Ji Liu; Donald A. Morgan; Leonor Pinilla; Rosalía Gallego; Asish K. Saha; Andries Kalsbeek; Eric Fliers; Peter H. Bisschop; Carlos Dieguez; Ruben Nogueiras; Kamal Rahmouni; Manuel Tena-Sempere; Miguel López
Summary Estrogens play a major role in the modulation of energy balance through central and peripheral actions. Here, we demonstrate that central action of estradiol (E2) inhibits AMP-activated protein kinase (AMPK) through estrogen receptor alpha (ERα) selectively in the ventromedial nucleus of the hypothalamus (VMH), leading to activation of thermogenesis in brown adipose tissue (BAT) through the sympathetic nervous system (SNS) in a feeding-independent manner. Genetic activation of AMPK in the VMH prevented E2-induced increase in BAT-mediated thermogenesis and weight loss. Notably, fluctuations in E2 levels during estrous cycle also modulate this integrated physiological network. Together, these findings demonstrate that E2 regulation of the VMH AMPK-SNS-BAT axis is an important determinant of energy balance and suggest that dysregulation in this axis may account for the common changes in energy homeostasis and obesity linked to dysfunction of the female gonadal axis.
Diabetes | 2012
Pablo B. Martínez de Morentin; Andrew J. Whittle; Johan Fernø; Ruben Nogueiras; Carlos Dieguez; Antonio Vidal-Puig; Miguel López
Smokers around the world commonly report increased body weight after smoking cessation as a major factor that interferes with their attempts to quit. Numerous controlled studies in both humans and rodents have reported that nicotine exerts a marked anorectic action. The effects of nicotine on energy homeostasis have been mostly pinpointed in the central nervous system, but the molecular mechanisms controlling its action are still not fully understood. The aim of this study was to investigate the effect of nicotine on hypothalamic AMP-activated protein kinase (AMPK) and its effect on energy balance. Here we demonstrate that nicotine-induced weight loss is associated with inactivation of hypothalamic AMPK, decreased orexigenic signaling in the hypothalamus, increased energy expenditure as a result of increased locomotor activity, increased thermogenesis in brown adipose tissue (BAT), and alterations in fuel substrate utilization. Conversely, nicotine withdrawal or genetic activation of hypothalamic AMPK in the ventromedial nucleus of the hypothalamus reversed nicotine-induced negative energy balance. Overall these data demonstrate that the effects of nicotine on energy balance involve specific modulation of the hypothalamic AMPK-BAT axis. These targets may be relevant for the development of new therapies for human obesity.
Biochimica et Biophysica Acta | 2010
Pablo B. Martínez de Morentin; Luis M. Varela; Johan Fernø; Ruben Nogueiras; Carlos Dieguez; Miguel López
Ectopic accumulation of lipids in peripheral tissues, such as pancreatic beta cells, liver, heart and skeletal muscle, leads to lipotoxicity, a process that contributes substantially to the pathophysiology of insulin resistance, type 2 diabetes, steatotic liver disease and heart failure. Current evidence has demonstrated that hypothalamic sensing of circulating lipids and modulation of hypothalamic endogenous fatty acid and lipid metabolism are two bona fide mechanisms modulating energy homeostasis at the whole body level. Key enzymes, such as AMP-activated protein kinase (AMPK) and fatty acid synthase (FAS), as well as intermediate metabolites, such as malonyl-CoA and long-chain fatty acids-CoA (LCFAs-CoA), play a major role in this neuronal network, integrating peripheral signals with classical neuropeptide-based mechanisms. However, one key question to be addressed is whether impairment of lipid metabolism and accumulation of specific lipid species in the hypothalamus, leading to lipotoxicity, have deleterious effects on hypothalamic neurons. In this review, we summarize what is known about hypothalamic lipid metabolism with focus on the events associated to lipotoxicity, such as endoplasmic reticulum (ER) stress in the hypothalamus. A better understanding of these molecular mechanisms will help to identify new drug targets for the treatment of obesity and metabolic syndrome.
Endocrinology | 2014
Patricia Seoane-Collazo; Pablo B. Martínez de Morentin; Johan Fernø; Carlos Dieguez; Ruben Nogueiras; Miguel López
Nicotine, the main addictive component of tobacco, promotes body weight reduction in humans and rodents. Recent evidence has suggested that nicotine acts in the central nervous system to modulate energy balance. Specifically, nicotine modulates hypothalamic AMP-activated protein kinase to decrease feeding and to increase brown adipose tissue thermogenesis through the sympathetic nervous system, leading to weight loss. Of note, most of this evidence has been obtained in animal models fed with normal diet or low-fat diet (LFD). However, its effectiveness in obese models remains elusive. Because obesity causes resistance towards many factors involved in energy homeostasis, the aim of this study has been to compare the effect of nicotine in a diet-induced obese (DIO) model, namely rats fed a high-fat diet, with rats fed a LFD. Our data show that chronic peripheral nicotine treatment reduced body weight by decreasing food intake and increasing brown adipose tissue thermogenesis in both LFD and DIO rats. This overall negative energy balance was associated to decreased activation of hypothalamic AMP-activated protein kinase in both models. Furthermore, nicotine improved serum lipid profile, decreased insulin serum levels, as well as reduced steatosis, inflammation, and endoplasmic reticulum stress in the liver of DIO rats but not in LFD rats. Overall, this evidence suggests that nicotine diminishes body weight and improves metabolic disorders linked to DIO and might offer a clear-cut strategy to develop new therapeutic approaches against obesity and its metabolic complications.
Reviews in Endocrine & Metabolic Disorders | 2011
Pablo B. Martínez de Morentin; Carmen R. González; Asisk K. Saha; Luís Martins; Carlos Dieguez; Antonio Vidal-Puig; Manuel Tena-Sempere; Miguel López
The AMP-activated protein kinase (AMPK) is the downstream constituent of a kinase cascade that acts as a sensor of cellular energy levels. Current data unequivocally indicate that hypothalamic AMPK plays a key role in the control of the whole body energy balance, by integrating peripheral signals, such as hormones and metabolites, with central signals, such as neuropeptides, and eliciting allostatic changes in energy homeostasis. Although the molecular details of these interactions are not fully understood, recent evidence has suggested that the interaction between AMPK with hypothalamic lipid metabolism and other metabolic sensors, such as the uncoupling protein 2 (UCP-2), the mammalian target of rapamycin (mTOR) and the deacetylase sirtuin 1 (SIRT1), may play a main role in the hypothalamic control of feeding and energy expenditure. Here, we summarize the role of hypothalamic AMPK as whole body energy gauge. Understanding this key molecule and especially its functions at central level may provide new therapeutic targets for the treatment of metabolic alterations and obesity.
Endocrinology | 2015
Pablo B. Martínez de Morentin; Ricardo Lage; Ismael González-García; Francisco Ruíz-Pino; Luís Martins; Diana Fernández-Mallo; Rosalía Gallego; Johan Fernø; Rosa Señarís; Asish K. Saha; Sulay Tovar; Carlos Dieguez; Ruben Nogueiras; Manuel Tena-Sempere; Miguel López
During gestation, hyperphagia is necessary to cope with the metabolic demands of embryonic development. There were three main aims of this study: Firstly, to investigate the effect of pregnancy on hypothalamic fatty acid metabolism, a key pathway for the regulation of energy balance; secondly, to study whether pregnancy induces resistance to the anorectic effect of fatty acid synthase (FAS) inhibition and accumulation of malonyl-coenzyme A (CoA) in the hypothalamus; and, thirdly, to study whether changes in hypothalamic AMPK signaling are associated with brown adipose tissue (BAT) thermogenesis during pregnancy. Our data suggest that in pregnant rats, the hypothalamic fatty acid pathway shows an overall state that should lead to anorexia and elevated BAT thermogenesis: decreased activities of AMP-activated protein kinase (AMPK), FAS, and carnitine palmitoyltransferase 1, coupled with increased acetyl-CoA carboxylase function with subsequent elevation of malonyl-CoA levels. This profile seems dependent of estradiol levels but not prolactin or progesterone. Despite the apparent anorexic and thermogenic signaling in the hypothalamus, pregnant rats remain hyperphagic and display reduced temperature and BAT function. Actually, pregnant rats develop resistance to the anorectic effects of central FAS inhibition, which is associated with a reduction of proopiomelanocortin (POMC) expression and its transcription factors phospho-signal transducer and activator of transcription 3, and phospho-forkhead box O1. This evidence demonstrates that pregnancy induces a state of resistance to the anorectic and thermogenic actions of hypothalamic cellular signals of energy surplus, which, in parallel to the already known refractoriness to leptin effects, likely contributes to gestational hyperphagia and adiposity.
Cell Metabolism | 2017
Noelia Martínez-Sánchez; Patricia Seoane-Collazo; Cristina Contreras; Luis M. Varela; Joan Villarroya; Eva Rial-Pensado; Xabier Buqué; Igor Aurrekoetxea; Teresa C. Delgado; Rafael Vázquez-Martínez; Ismael González-García; Juan Roa; Andrew J. Whittle; Beatriz Gomez-Santos; Vidya Velagapudi; Y.C. Loraine Tung; Donald A. Morgan; Peter J. Voshol; Pablo B. Martínez de Morentin; Tania López-González; Laura Liñares-Pose; Francisco Gonzalez; Krishna Chatterjee; Tomás Sobrino; Gema Medina-Gomez; Roger J. Davis; Núria Casals; Matej Orešič; Anthony P. Coll; Antonio Vidal-Puig
Summary Thyroid hormones (THs) act in the brain to modulate energy balance. We show that central triiodothyronine (T3) regulates de novo lipogenesis in liver and lipid oxidation in brown adipose tissue (BAT) through the parasympathetic (PSNS) and sympathetic nervous system (SNS), respectively. Central T3 promotes hepatic lipogenesis with parallel stimulation of the thermogenic program in BAT. The action of T3 depends on AMP-activated protein kinase (AMPK)-induced regulation of two signaling pathways in the ventromedial nucleus of the hypothalamus (VMH): decreased ceramide-induced endoplasmic reticulum (ER) stress, which promotes BAT thermogenesis, and increased c-Jun N-terminal kinase (JNK) activation, which controls hepatic lipid metabolism. Of note, ablation of AMPKα1 in steroidogenic factor 1 (SF1) neurons of the VMH fully recapitulated the effect of central T3, pointing to this population in mediating the effect of central THs on metabolism. Overall, these findings uncover the underlying pathways through which central T3 modulates peripheral metabolism.
PLOS Biology | 2010
Pablo B. Martínez de Morentin; Miguel López
A novel mechanism explains how exercise exerts its beneficial effects on energy balance through an effect at the level of the hypothalamus.
The Journal of Pathology | 2010
Pablo B. Martínez de Morentin; Carmen R. González; Miguel López
Disturbances in brain cholesterol metabolism have been linked to Alzheimers disease (AD) pathology. A high‐cholesterol diet increases fibrillar amyloid β peptide (Aβ) deposition, inflammation, and apoptosis that eventually results in neurodegeneration and learning and memory impairments. In the October 2010 issue of The Journal of Pathology, Lu and colleagues provided a novel and interesting mechanism that explains how quercetin, a flavonoid found at high concentrations in green and black teas, may help to protect against cholesterol‐induced neurotoxicity through activation of AMP‐activated protein kinase (AMPK), a metabolic energy gauge. Further work will be necessary to address whether AMPK may be a potential target to combat neurodegenerative diseases. Copyright