Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pablo Campo is active.

Publication


Featured researches published by Pablo Campo.


Environmental Science & Technology | 2013

Biodegradability of Corexit 9500 and dispersed South Louisiana crude oil at 5 and 25 °C.

Pablo Campo; Albert D. Venosa; Makram T. Suidan

The reported persistence of the dioctyl sodium sulfosuccinate (DOSS) surfactant in Corexit 9500 in the oil plumes formed during the Deepwater Horizon oil spill has contributed to concerns regarding the biodegradability and bioavailability of dispersed oil and dispersants used as an oil spill countermeasure in the Gulf of Mexico. We studied the biodegradation of DOSS and dispersed South Louisiana crude oil (SLC) in laboratory microcosms. Two oil-degrading cultures from the Gulf of Mexico were isolated, one from the surface (meso) and one from close to the area of the Macondo well (cryo). Each was enriched on SLC, the former at 25 °C, the latter at 5 °C. Results indicated that the meso culture rapidly and completely degraded DOSS, alkanes, and aromatics. The cryo culture metabolized the same compounds but with a lag of 28 d and a remaining residual of iso-alkanes, n-C(30-35), and the 4-ring PAHs.


Environmental Science & Technology | 2010

Biodegradability of Lingering Crude Oil 19 Years after the Exxon Valdez Oil Spill

Albert D. Venosa; Pablo Campo; Makram T. Suidan

In 2001 and 2003, geospatial surveys of lingering oil were conducted in Prince William Sound (PWS) resulting in a prediction of significant acreage being contaminated with substantial subsurface oil from the 1989 Exxon Valdez oil spill (EVOS). In 2007, other researchers developed a mass weathering index (MWI) based on the degree of weathering of PAHs normalized to conserved biomarkers: if the degree of weathering of oil is 70% or more, further attempts at bioremediation would be unjustified. The objective of our study was to measure the biodegradability of the 19-year lingering oil in laboratory microcosms. Samples of beach substrate were collected from representative sites in PWS contaminated with oil residues of varying weathering states according to the MWI model. Enough sacrificial microcosms were set up to accommodate two treatments for each site (natural attenuation and biostimulation). Results indicated that lingering oil is biodegradable. Nutrient addition stimulated biodegradation compared to natural attenuation in all treatments regardless of the degree of weathering. The most weathered oil according to the MWI was the most biodegradable. Substantial biodegradation occurred in the natural attenuation microcosms due to the high sediment Total Kjeldahl Nitrogen (TKN), which served as a nitrogen source for biodegradation. Most of the observed biodegradation was due to the presence of dissolved oxygen. Nitrogen was a limiting factor but oxygen was the predominant one.


Science of The Total Environment | 2010

Assessment of the anaerobic degradation of six active pharmaceutical ingredients

Stephen E. Musson; Pablo Campo; Thabet Tolaymat; Makram T. Suidan; Timothy G. Townsend

Research examined the anaerobic degradation of 17 alpha-ethynylestradiol, acetaminophen, acetylsalicylic acid, ibuprofen, metoprolol tartrate, and progesterone by methanogenic bacteria. Using direct sample analysis and respirometric testing, anaerobic degradation was examined with (a) each compound as the sole organic carbon source and (b) each compound at a lower concentration (250 microg/L) and cellulose serving as the primary organic carbon source. The change in pharmaceutical concentration was determined following 7, 28, 56, and 112 days of anaerobic incubation at 37 degrees C. Only acetylsalicylic acid demonstrated significant degradation; the remaining compounds showed a mixture of degradation and abiotic removal mechanisms. Experimental results were compared with BIOWIN, an anaerobic degradation prediction model of the US Environmental Protection Agency. The BIOWIN model predicted anaerobic biodegradability of the compounds in the order: acetylsalicylic acid > metoprolol tartrate > ibuprofen > acetaminophen > 17 alpha-ethinylestradiol >progesterone. This corresponded well with the experimental findings which found degradability in the order: acetylsalicylic acid > metoprolol tartrate > acetaminophen > ibuprofen.


Talanta | 2006

Statistical evaluation of an analytical GC/MS method for the determination of long chain fatty acids.

Pablo Campo; George A. Sorial; Makram T. Suidan; Albert D. Venosa

In-depth evaluation of an analytical method to detect and quantify long chain fatty acids (C(8)-C(16)) at trace level concentrations (25-1000 microg/l) is presented. The method requires derivatization of the acids with methanolic boron trifluoride, separation, and detection by gas chromatography-mass spectrometry. The calibration experiments passed all the tested performance criteria such as linearity, homoscedasticity, and ruggedness. The detection limits and related quantities were computed by applying the method detection limit, and the calibration line approximation. The values obtained by applying the latter approach were more reliable and consistent with the actual statistical theory of detection decisions and yielded the following concentrations: C(8), 87.6 microg/l; C(10), 45.2 microg/l; C(11), 39.9 microg/l; C(12), 37.7 microg/l; C(14), 41.4 microg/l and C(16), 40.6 microg/l. Two different gas-liquid chromatographic columns were tested and similar results achieved, which shows the ruggedness of the method.


Journal of Hazardous Materials | 2015

Identification of chlorinated oligomers formed during anodic oxidation of phenol in the presence of chloride.

Linxi Chen; Pablo Campo; Margaret J. Kupferle

Chlorinated oligomer intermediates formed during the anodic electrochemical oxidation of phenol with a boron-doped diamond electrode were studied at two different concentrations of chloride (5mM and 50mM). Under the same ionic strength, with sodium sulfate being the make-up ion, a 10-fold increase in Cl(-) led to removal rates 10.8, 1.5, and 1.4 times higher for phenol, TOC, and COD, respectively. Mono-, di- and trichlorophenols resulting from electrophilic substitution were the identified by-products. Nevertheless, discrepancies between theoretical and measured TOC values along with gaps in the mass balance of chlorine-containing species indicated the formation of unaccounted-for chlorinated by-products. Accurate mass measurements by liquid chromatography quadrupole time-of-flight mass spectrometry and MS-MS fragmentation spectra showed that additional compounds formed were dimers and trimers of phenol with structures similar to triclosan and polychlorinated dibenzo-p-dioxins.


Chemosphere | 2016

Effect of dispersants on the biodegradation of South Louisiana crude oil at 5 and 25 °C

Mobing Zhuang; Gulizhaer Abulikemu; Pablo Campo; William E. Platten; Makram T. Suidan; Albert D. Venosa; Robyn N. Conmy

This article reports biodegradation rates for a commercial dispersant, JD-2000, South Louisiana crude oil (SLC) alone, and SLC dispersed with JD-2000 at 5 and 25 °C. Results from the biodegradation experiments revealed that Component X, a chemical marker for JD-2000, rapidly degraded at both temperatures. The application of JD-2000 decreased by half the overall biodegradation rate of aliphatic compounds at 25 °C. At 5 °C, a residual fraction consisting of iso- and n-alkanes (C29-C35) persisted after 56 d. The combination of dispersant and higher temperature resulted in faster removal rates for 2- and 3-ring polycyclic aromatic hydrocarbons. When compared with Corexit 9500, our results suggest that the chemistry of the surfactant (or surfactants) in JD-2000 might have favored oil dissolution (substrate transport to the aqueous phase) as an uptake mechanism over adhesion, which requires direct contact of the biomass with the oil.


Chemosphere | 2013

Biological nitrogen and carbon removal in a gravity flow biomass concentrator reactor for municipal sewage treatment

Daniel Scott; Taira Hidaka; Pablo Campo; Eric Kleiner; Makram T. Suidan; Albert D. Venosa

A novel membrane system, the Biomass Concentrator Reactor (BCR), was evaluated as an alternative technology for the treatment of municipal wastewater. Because the BCR is equipped with a membrane whose average poresize is 20 μm (18-28 μm), the reactor requires low-pressure differential to operate (gravity). The effectiveness of this system was evaluated for the removal of carbon and nitrogen using two identical BCRs, identified as conventional and hybrid, that were operated in parallel. The conventional reactor was operated under full aerobic conditions (i.e., organic carbon and ammonia oxidation), while the hybrid reactor incorporated an anoxic zone for nitrate reduction as well as an aerobic zone for organic carbon and ammonia oxidation. Both reactors were fed synthetic wastewater at a flow rate of 71 L d(-1), which resulted in a hydraulic retention time of 9 h. In the case of the hybrid reactor, the recycle flow from the aerobic zone to the anoxic zone was twice the feed flow rate. Reactor performance was evaluated under two solids retention times (6 and 15 d). Under these conditions, the BCRs achieved nearly 100% mixed liquor solids separation with a hydraulic head differential of less than 2.5 cm. The COD removal efficiency was over 90%. Essentially complete nitrification was achieved in both systems, and nitrogen removal in the hybrid reactor was close to the expected value (67%).


Science of The Total Environment | 2017

Progesterone potentially degrades to potent androgens in surface waters.

Jo Ojoghoro; Aj Chaudhary; Pablo Campo; John P. Sumpter; Scrimshaw

Progesterone is a natural hormone, excreted in higher concentrations than estrogens, and has been detected in the aqueous environment. As with other compounds, it is transformed during wastewater treatment processes and in the environment. However, minor modifications to the structure may result in transformation products which still exhibit biological activity, so understanding what transformation products are formed is of importance. The current study was undertaken to identify putative transformation products resulting from spiking river water with progesterone in a laboratory-based degradation study and hence to follow the metabolic breakdown pathways. On the basis of literature reports and predictions from the EAWAG Biocatalysis/biodegradation database, target putative transformation products were initially monitored under unit resolution mass spectrometry. The identity of these transformation products was confirmed by using accurate-mass quadrupole time-of-flight. The study results highlight that transformation of progesterone can potentially create other classes of steroids, some of which may still be potent, and possess other types of biological activity.


Water Research | 2018

Impacts of coagulation-flocculation treatment on the size distribution and bioavailability of trace metals (Cu, Pb, Ni, Zn) in municipal wastewater

Andrew J. Hargreaves; Peter Vale; Jonathan Whelan; Luca Alibardi; Carlos Constantino; Gabriela Dotro; Elise Cartmell; Pablo Campo

This study investigated the impact of coagulation-flocculation treatment on metal form and bioavailability in municipal wastewater. Real humus effluent samples were separated into particulate, colloidal and truly dissolved fractions before and after treatment with either ferric chloride (FeCl3) or the biopolymer Floculan. Results revealed that both reagents effectively (≥48%) eliminated Cu, Pb and Zn from the particulate fraction and removed Cu and Zn from the colloidal fraction in conjunction with colloidal organic carbon (COC). Although organics in the truly dissolved fraction were resistant to removal, Floculan reduced Cu in this fraction by 72% owing to the complexation of free Cu ions to phenol and amino groups along the polymeric chains, revealing an additional removal pathway. In fact, COC removed in the CF process by Floculan was replaced with truly dissolved compounds, input as a result of this reagents organic composition. Floculan, therefore, reduced the soluble concentration of Cu and Zn without changing the DOC concentration, thus reducing the bioavailability of these metals in treated effluent. FeCl3 did not reduce the bioavailability of target metals, thus did not deliver any environmental benefit. This work provides important information for the selection and development of high performance coagulants to improve metal removal.


Talanta | 2010

A liquid chromatography-electrospray ionization-tandem mass spectrometry study of ethanolamines in high salinity industrial wastewaters

Pablo Campo; Makram T. Suidan; Yunzhou Chai; John W. Davis

The detection and quantitation of four ethanolamines, tris(2-hydroxyethyl)amine (triethanolamine, TEA), N,N-bis(2-hydroxyethyl)methylamine (methyldiethanolamine, MDEA), N-(2-aminoethyl)ethanolamine (AEA), and N,N-diethylethanolamine (DEA), were achieved in wastewaters from two aerobic activated sludge bioreactors located in an industrial wastewater treatment plant. The streams had salt concentrations of approximately 3% and 7% by weight in Reactor 1 and Reactor 2, respectively. The use of liquid chromatography-electrospray ionization-tandem mass spectrometry avoided the need for some sample preparation steps such as extraction, concentration, and derivatization. Ion suppression in the electrospray, attributable to the presence of sodium clusters, was attenuated by a 10-fold dilution of the wastewaters with acetonitrile. A matrix-matched calibration model averted other potential interferences. For the compounds analyzed in selected reaction monitoring mode (TEA, MDEA, and DEA), the calibration curves presented linearity in a range of 10-1000microg/L with corresponding detection limits ranging from 2 to 11microg/L, depending upon the specific analyte and aqueous matrix. AEA was calibrated in selected ion monitoring mode (100-1000microg/L), with corresponding detection limits in the two wastewaters of 74.6 and 85.3microg/L, respectively. Overall good precision (<10%) and accuracy (97-110%) were achieved for both matrices, which fell within-laboratory reproducibility. Finally, the amines were introduced into six mixed liquor samples from both reactors and quantified following the reported protocol. Again, recoveries were close to 100% with a relative standard deviation of less than 10% in all cases.

Collaboration


Dive into the Pablo Campo's collaboration.

Top Co-Authors

Avatar

Makram T. Suidan

American University of Beirut

View shared research outputs
Top Co-Authors

Avatar

Albert D. Venosa

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robyn N. Conmy

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge