Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pablo D. Cerdán is active.

Publication


Featured researches published by Pablo D. Cerdán.


Nature | 2003

Regulation of flowering time by light quality

Pablo D. Cerdán; Joanne Chory

The transition to flowering in plants is regulated by environmental factors such as temperature and light. Plants grown under dense canopies or at high density perceive a decrease in the ratio of red to far-red incoming light. This change in light quality serves as a warning of competition, triggering a series of responses known collectively as the ‘shade-avoidance syndrome’. During shade avoidance, stems elongate at the expense of leaf expansion, and flowering is accelerated. Of the five phytochromes—a family of red/far-red light photoreceptors—in Arabidopsis, phytochrome B (phyB) has the most significant role in shade-avoidance responses, but the mechanisms by which phyB regulates flowering in response to altered ratios of red to far-red light are largely unknown. Here we identify PFT1 (PHYTOCHROME AND FLOWERING TIME 1), a nuclear protein that acts in a phyB pathway and induces flowering in response to suboptimal light conditions. PFT1 functions downstream of phyB to regulate the expression of FLOWERING LOCUS T (FT), providing evidence for the existence of a light-quality pathway that regulates flowering time in plants.


Nature | 2010

A methyl transferase links the circadian clock to the regulation of alternative splicing

Sabrina Elena Sanchez; Ezequiel Petrillo; Esteban J. Beckwith; Xu Zhang; Mathias L. Rugnone; C. Esteban Hernando; Juan Cuevas; Micaela A. Godoy Herz; Ana Depetris-Chauvin; Craig G. Simpson; John W. S. Brown; Pablo D. Cerdán; Justin O. Borevitz; Paloma Más; Fernanda M. Ceriani; Alberto R. Kornblihtt; Marcelo J. Yanovsky

Circadian rhythms allow organisms to time biological processes to the most appropriate phases of the day–night cycle. Post-transcriptional regulation is emerging as an important component of circadian networks, but the molecular mechanisms linking the circadian clock to the control of RNA processing are largely unknown. Here we show that PROTEIN ARGININE METHYL TRANSFERASE 5 (PRMT5), which transfers methyl groups to arginine residues present in histones and Sm spliceosomal proteins, links the circadian clock to the control of alternative splicing in plants. Mutations in PRMT5 impair several circadian rhythms in Arabidopsis thaliana and this phenotype is caused, at least in part, by a strong alteration in alternative splicing of the core-clock gene PSEUDO RESPONSE REGULATOR 9 (PRR9). Furthermore, genome-wide studies show that PRMT5 contributes to the regulation of many pre-messenger-RNA splicing events, probably by modulating 5′-splice-site recognition. PRMT5 expression shows daily and circadian oscillations, and this contributes to the mediation of the circadian regulation of expression and alternative splicing of a subset of genes. Circadian rhythms in locomotor activity are also disrupted in dart5-1, a mutant affected in the Drosophila melanogaster PRMT5 homologue, and this is associated with alterations in splicing of the core-clock gene period and several clock-associated genes. Our results demonstrate a key role for PRMT5 in the regulation of alternative splicing and indicate that the interplay between the circadian clock and the regulation of alternative splicing by PRMT5 constitutes a common mechanism that helps organisms to synchronize physiological processes with daily changes in environmental conditions.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Arabidopsis thaliana life without phytochromes

Bárbara Strasser; Maximiliano Sánchez-Lamas; Marcelo J. Yanovsky; Jorge J. Casal; Pablo D. Cerdán

Plants use light as a source of energy for photosynthesis and as a source of environmental information perceived by photoreceptors. Testing whether plants can complete their cycle if light provides energy but no information about the environment requires a plant devoid of phytochromes because all photosynthetically active wavelengths activate phytochromes. Producing such a quintuple mutant of Arabidopsis thaliana has been challenging, but we were able to obtain it in the flowering locus T (ft) mutant background. The quintuple phytochrome mutant does not germinate in the FT background, but it germinates to some extent in the ft background. If germination problems are bypassed by the addition of gibberellins, the seedlings of the quintuple phytochrome mutant exposed to red light produce chlorophyll, indicating that phytochromes are not the sole red-light photoreceptors, but they become developmentally arrested shortly after the cotyledon stage. Blue light bypasses this blockage, rejecting the long-standing idea that the blue-light receptors cryptochromes cannot operate without phytochromes. After growth under white light, returning the quintuple phytochrome mutant to red light resulted in rapid senescence of already expanded leaves and severely impaired expansion of new leaves. We conclude that Arabidopsis development is stalled at several points in the presence of light suitable for photosynthesis but providing no photomorphogenic signal.


Plant Physiology | 2008

Acceleration of Flowering during Shade Avoidance in Arabidopsis Alters the Balance between FLOWERING LOCUS C-Mediated Repression and Photoperiodic Induction of Flowering

Amanda C. Wollenberg; Bárbara Strasser; Pablo D. Cerdán; Richard M. Amasino

The timing of the floral transition in Arabidopsis (Arabidopsis thaliana) is influenced by a number of environmental signals. Here, we have focused on acceleration of flowering in response to vegetative shade, a condition that is perceived as a decrease in the ratio of red to far-red radiation. We have investigated the contributions of several known flowering-time pathways to this acceleration. The vernalization pathway promotes flowering in response to extended cold via transcriptional repression of the floral inhibitor FLOWERING LOCUS C (FLC); we found that a low red to far-red ratio, unlike cold treatment, lessened the effects of FLC despite continued FLC expression. A low red to far-red ratio required the photoperiod-pathway genes GIGANTEA (GI) and CONSTANS (CO) to fully accelerate flowering in long days and did not promote flowering in short days. Together, these results suggest a model in which far-red enrichment can bypass FLC-mediated late flowering by shifting the balance between FLC-mediated repression and photoperiodic induction of flowering to favor the latter. The extent of this shift was dependent upon environmental parameters, such as the length of far-red exposure. At the molecular level, we found that far-red enrichment generated a phase delay in GI expression and enhanced CO expression and activity at both dawn and dusk. Finally, our analysis of the contribution of PHYTOCHROME AND FLOWERING TIME1 (PFT1) to shade-mediated rapid flowering has led us to suggest a new model for the involvement of PFT1 in light signaling.


Plant Molecular Biology | 1997

A 146 bp fragment of the tobacco Lhcb1*2 promoter confers very-low-fluence, low-fluence and high-irradiance responses of phytochrome to a minimal CaMV 35S promoter

Pablo D. Cerdán; Roberto J. Staneloni; Jorge J. Casal; Rodolfo A. Sánchez

The occurrence of very-low-fluence responses (VLFR), low-fluence responses (LFR) and high-irradiance responses (HIR) of phytochrome was investigated for the expression of the gene of β-glucuronidase (gusA) under the control of the tobacco Lhcb1*2 promoter, in etiolated transgenic tobacco seedlings. The activity of β-glucuronidase (GUS) showed biphasic responses to the calculated proportion of Pfr provided by light pulses. The first phase (i.e. the VLFR) showed a maximum for Pfr levels characteristic of far-red light. The second phase (i.e. the LFR) was observed at higher Pfr levels and was reversible by far-red light pulses. The strong effect of continuous far-red light (i.e. HIR) was fluence-rate-dependent and could not be replaced either by hourly pulses of the same spectral composition and total fluence or by very low fluences of red light. Deletion Lhcb1*2 promoter to -453 caused little loss of GUS activity. The -453 to -31, -270 to -31 and -176 to -31 fragments of the Lhcb1*2 promoter conferred proportionally normal VLFR, LFR and HIR to a truncated (-46 to +8) CaMV 35S minimal promoter. This is the first demonstration of the presence of three phytochrome action modes in the control of the transcriptional activity of a single gene. The cis-acting regulatory elements necessary for VLFR, LFR and HIR are present in a 146 bp fragment of the tobacco Lhcb1*2 promoter.


The Plant Cell | 2005

Phytochrome Control of the Arabidopsis Transcriptome Anticipates Seedling Exposure to Light

María Agustina Mazzella; María Verónica Arana; Roberto J. Staneloni; Susana Perelman; María J. Rodriguez Batiller; Jorge P Muschietti; Pablo D. Cerdán; Kunhua Chen; Rodolfo A. Sánchez; Tong Zhu; Joanne Chory; Jorge J. Casal

Phytochromes mediate a profound developmental shift when dark-grown seedlings are exposed to light. Here, we show that a subset of genes is upregulated in phytochrome B (phyB) mutants even before dark-grown Arabidopsis thaliana seedlings are exposed to light. Most of these genes bear the RY cis motif, which is a binding site of the transcription factor ABSCISIC ACID INSENSITIVE3 (ABI3), and the phyB mutation also enhances ABI3 expression. These changes in transcriptome have physiological consequences, because seedlings of the abi3 mutant showed enhanced responses to pulses of far-red light, whereas ABI3 overexpressers exhibited the opposite pattern. Seedlings of the wild type derived from seeds germinated in full darkness showed enhanced expression of genes bearing the RY cis motif and reduced responses to far-red light. We propose that, via changes in ABI3 expression, light, perceived mainly by phyB in the seed, generates a downstream transdevelopmental phase signal that preconditions the seedling to its most likely environment.


The Plant Cell | 2000

Sustained but Not Transient Phytochrome A Signaling Targets a Region of an Lhcb1*2 Promoter Not Necessary for Phytochrome B Action

Pablo D. Cerdán; Roberto J. Staneloni; Jimena Ortega; Matilde M. Bunge; María José Rodriguez-Batiller; Rodolfo A. Sánchez; Jorge J. Casal

Current evidence is inconclusive regarding the point of signaling convergence downstream from different members of the phytochrome family. In transgenic Arabidopsis, the activity of a reporter enzyme under the control of the –453 to +67 fragment of an Lhcb1*2 promoter shows very low fluence responses (VLFRs) and high-irradiance responses (HIRs) mediated by phytochrome A and low-fluence responses (LFRs) mediated by phytochrome B. A 5′ deletion of the promoter to –134 abolished the HIR without affecting VLFR or LFR. In transgenic tobacco, VLFR and LFR were observed for the –176 to –31 or –134 to –31 fragments of Lhcb1*2 fused to 35S cauliflower mosaic virus minimal promoters, but only the largest fragment showed HIR. We propose that sustained activation of phytochrome A with far-red light initiates a signaling cascade that deviates from phytochrome B signaling and transient phytochrome A signaling and that this divergence extends as far as the Lhcb1*2 promoter.


Plant Physiology | 2012

Proteasome-Mediated Turnover of Arabidopsis MED25 Is Coupled to the Activation of FLOWERING LOCUS T Transcription

Sabrina Iñigo; Adrian Nicolas Giraldez; Joanne Chory; Pablo D. Cerdán

The Mediator complex is a greater than 1-megadalton complex, composed of about 30 subunits and found in most eukaryotes, whose main role is to transmit signals from DNA-bound transcription factors to RNA Polymerase II. The proteasome is emerging as an important regulator of transcription during both initiation and elongation. It is increasing the number of cases where the proteolysis of transcriptional activators by the proteasome activates their function. This counterintuitive phenomenon was called “activation by destruction.” Here, we show that, in Arabidopsis (Arabidopsis thaliana), PHYTOCHROME AND FLOWERING TIME1 (PFT1), the MEDIATOR25 (MED25) subunit of the plant Mediator complex, is degraded by the proteasome and that proteasome-mediated PFT1 turnover is coupled to its role in stimulating the transcription of FLOWERING LOCUS T, the plant florigen, which is involved in the process of flowering induction. We further identify two novel RING-H2 proteins that target PFT1 for degradation. We show that MED25-BINDING RING-H2 PROTEIN1 (MBR1) and MBR2 bind to PFT1 in yeast (Saccharomyces cerevisiae) and in vitro, and they promote PFT1 degradation in vivo, in a RING-H2-dependent way, typical of E3 ubiquitin ligases. We further show that both MBR1 and MBR2 also promote flowering by PFT1-dependent and -independent mechanisms. Our findings extend the phenomenon of activation by destruction to a Mediator subunit, adding a new mechanism by which Mediator subunits may regulate downstream genes in specific pathways. Furthermore, we show that two novel RING-H2 proteins are involved in the destruction of PFT1, adding new players to this process in plants.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Bell-like homeodomain selectively regulates the high-irradiance response of phytochrome A

Roberto J. Staneloni; María José Rodriguez-Batiller; Danilo Legisa; María R. Scarpin; Adamantia Agalou; Pablo D. Cerdán; Annemarie H. Meijer; Pieter B.F. Ouwerkerk; Jorge J. Casal

Plant responses mediated by phytochrome A display a first phase saturated by transient light signals and a second phase requiring sustained excitation with far-red light (FR). These discrete outcomes, respectively so-called very-low-fluence response (VLFR) and high-irradiance response (HIR), are appropriate in different environmental and developmental contexts but the mechanisms that regulate the switch remain unexplored. Promoter analysis of a light-responsive target gene revealed a motif necessary for HIR but not for VLFR. This motif is required for binding of the Bell-like homeodomain 1 (BLH1) to the promoter in in vitro and in yeast 1-hybrid experiments. Promoter substitutions that increased BLH1 binding also enhanced HIR. blh1 mutants showed reduced responses to continuous FR and to deep canopy shadelight, but they retained normal responses to pulsed FR or red light and unfiltered sunlight. BLH1 enhanced BLH1 expression and its promotion by FR. We conclude that BLH1 specifically regulates HIR and not VLFR of phytochrome A.


Photochemistry and Photobiology | 2016

Acute Effects of Light on Alternative Splicing in Light-Grown Plants.

Estefania Mancini; Sabrina E. Sanchez; Andres Romanowski; Rubén Gustavo Schlaen; Maximiliano Sánchez-Lamas; Pablo D. Cerdán; Marcelo J. Yanovsky

Light modulates plant growth and development to a great extent by regulating gene expression programs. Here, we evaluated the effect of light on alternative splicing (AS) in light‐grown Arabidopsis thaliana plants using high‐throughput RNA sequencing (RNA‐seq). We found that an acute light pulse given in the middle of the night, a treatment that simulates photoperiod lengthening, affected AS events corresponding to 382 genes. Some of these AS events were associated with genes involved in primary metabolism and stress responses, which may help to adjust metabolic and physiological responses to seasonal changes. We also found that several core clock genes showed changes in AS in response to the light treatment, suggesting that light regulation of AS may play a role in clock entrainment. Finally, we found that many light‐regulated AS events were associated with genes encoding RNA processing proteins and splicing factors, supporting the idea that light regulates this posttranscriptional regulatory layer through AS regulation of splicing factors. Interestingly, the effect of a red‐light pulse on AS of a gene encoding a splicing factor was not impaired in a quintuple phytochrome mutant, providing unequivocal evidence that nonphotosensory photoreceptors control AS in light‐grown plants.

Collaboration


Dive into the Pablo D. Cerdán's collaboration.

Top Co-Authors

Avatar

Jorge J. Casal

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joanne Chory

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bárbara Strasser

Facultad de Ciencias Exactas y Naturales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

María Agustina Mazzella

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alberto R. Kornblihtt

Facultad de Ciencias Exactas y Naturales

View shared research outputs
Researchain Logo
Decentralizing Knowledge