Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pablo E. Visconti is active.

Publication


Featured researches published by Pablo E. Visconti.


Journal of Biological Chemistry | 2003

Phosphoproteome Analysis of Capacitated Human Sperm EVIDENCE OF TYROSINE PHOSPHORYLATION OF A KINASE-ANCHORING PROTEIN 3 AND VALOSIN-CONTAINING PROTEIN/p97 DURING CAPACITATION

Scott B. Ficarro; Olga Chertihin; V. Anne Westbrook; Forest M. White; Friederike L. Jayes; Petr Kalab; Jarrod A. Marto; Jeffrey Shabanowitz; John C. Herr; Donald F. Hunt; Pablo E. Visconti

Before fertilization can occur, mammalian sperm must undergo capacitation, a process that requires a cyclic AMP-dependent increase in tyrosine phosphorylation. To identify proteins phosphorylated during capacitation, two-dimensional gel analysis coupled to anti-phosphotyrosine immunoblots and tandem mass spectrometry (MS/MS) was performed. Among the protein targets, valosin-containing protein (VCP), a homolog of the SNARE-interacting protein NSF, and two members of the A kinase-anchoring protein (AKAP) family were found to be tyrosine phosphorylated during capacitation. In addition, immobilized metal affinity chromatography was used to investigate phosphorylation sites in whole protein digests from capacitated human sperm. To increase this chromatographic selectivity for phosphopeptides, acidic residues in peptide digests were converted to their respective methyl esters before affinity chromatography. More than 60 phosphorylated sequences were then mapped by MS/MS, including precise sites of tyrosine and serine phosphorylation of the sperm tail proteins AKAP-3 and AKAP-4. Moreover, differential isotopic labeling was developed to quantify phosphorylation changes occurring during capacitation. The phosphopeptide enrichment and quantification methodology coupled to MS/MS, described here for the first time, can be employed to map and compare phosphorylation sites involved in multiple cellular processes. Although we were unable to determine the exact site of phosphorylation of VCP, we did confirm, using a cross-immunoprecipitation approach, that this protein is tyrosine phosphorylated during capacitation. Immunolocalization of VCP showed fluorescent staining in the neck of noncapacitated sperm. However, after capacitation, staining in the neck decreased, and most of the sperm showed fluorescent staining in the anterior head.


Journal of Reproductive Immunology | 2002

Novel signaling pathways involved in sperm acquisition of fertilizing capacity

Pablo E. Visconti; V.A. Westbrook; Olga Chertihin; Ignacio A. Demarco; Susan B. Sleight; Alan B. Diekman

Capacitation is a complex series of molecular events that occurs in sperm after epididymal maturation and confers on sperm the ability to fertilize an egg. This process can be mimicked in vitro in defined media, the composition of which is based on the electrolyte concentration of oviductal fluid. In most cases, capacitation media contain energy substrates, such as pyruvate, lactate and glucose, a cholesterol acceptor (usually serum albumin), NaHCO(3), Ca(2+), low K(+), and physiological Na(+) concentrations. The mechanism of action by which these compounds promote capacitation is poorly understood at the molecular level; however, some molecular events significant to the initiation of capacitation have been identified. For example, capacitation correlates with cholesterol efflux from the sperm plasma membrane, increased membrane fluidity, modulations in intracellular ion concentrations, hyperpolarization of the sperm plasma membrane and increased protein tyrosine phosphorylation. These molecular events are required for the subsequent induction of hyperactivation and the acrosome reaction. This review discusses the recent progress that has been made in elucidating mechanisms which regulate sperm capacitation.


Journal of Biological Chemistry | 1999

Cholesterol Efflux-mediated Signal Transduction in Mammalian Sperm β-CYCLODEXTRINS INITIATE TRANSMEMBRANE SIGNALING LEADING TO AN INCREASE IN PROTEIN TYROSINE PHOSPHORYLATION AND CAPACITATION

Pablo E. Visconti; Hannah Galantino-Homer; XiaoPing Ning; Grace D. Moore; Juan Pablo Valenzuela; Carolina J. Jorgez; Juan G. Alvarez; Gregory S. Kopf

Sperm capacitation in vitro is highly correlated with an increase in protein tyrosine phosphorylation that is regulated by cAMP through a unique mode of signal transduction cross-talk. The activation of this signaling pathway, as well as capacitation, requires bovine serum albumin (BSA) in the incubation medium. BSA is hypothesized to modulate capacitation through its ability to remove cholesterol from the sperm plasma membrane. Here we demonstrate that the cholesterol-binding heptasaccharides, methyl-β-cyclodextrin and OH-propyl-β-cyclodextrin, promote the release of cholesterol from the mouse sperm plasma membrane in media devoid of BSA. Both of these β-cyclodextrins were also demonstrated to increase protein tyrosine phosphorylation in the absence of BSA in both mouse and bull sperm, and the patterns of phosphorylation were similar to those induced by media containing BSA. The potency of the different β-cyclodextrins to increase protein tyrosine phosphorylation in sperm was correlated with their cholesterol binding efficiencies, and preincubation of the β-cyclodextrins with cholesterol- SO4 − to saturate their cholesterol-binding sites blocked the ability of these compounds to stimulate protein tyrosine phosphorylation. The β-cyclodextrin effect on protein tyrosine phosphorylation was both NaHCO3 and protein kinase A-dependent. The β-cyclodextrins were also able to capacitate mouse sperm in the absence of BSA, as measured by the ability of the zona pellucida to induce the acrosome reaction and by successful fertilization in vitro. In summary, β-cyclodextrins can completely replace BSA in media to support signal transduction leading to capacitation. These data further support the coupling of cholesterol efflux to the activation of membrane and transmembrane signaling events leading to the activation of a unique signaling pathway involving the cross-talk between cAMP and tyrosine kinase second messenger systems, thus defining a new mode of cellular signal transduction initiated by cholesterol release.


Journal of Clinical Investigation | 2008

Human sperm devoid of PLC, zeta 1 fail to induce Ca(2+) release and are unable to initiate the first step of embryo development.

Sook-Young Yoon; Teru Jellerette; Ana M. Salicioni; Hoi Chang Lee; Myung-sik Yoo; Kevin Coward; John Parrington; Daniel Grow; Jose Cibelli; Pablo E. Visconti; Jesse Mager; Rafael A. Fissore

Egg activation, which is the first step in the initiation of embryo development, involves both completion of meiosis and progression into mitotic cycles. In mammals, the fertilizing sperm delivers the activating signal, which consists of oscillations in free cytosolic Ca(2+) concentration ([Ca(2+)](i)). Intracytoplasmic sperm injection (ICSI) is a technique that in vitro fertilization clinics use to treat a myriad of male factor infertility cases. Importantly, some patients who repeatedly fail ICSI also fail to induce egg activation and are, therefore, sterile. Here, we have found that sperm from patients who repeatedly failed ICSI were unable to induce [Ca(2+)](i) oscillations in mouse eggs. We have also shown that PLC, zeta 1 (PLCZ1), the sperm protein thought to induce [Ca(2+)](i) oscillations, was localized to the equatorial region of wild-type sperm heads but was undetectable in sperm from patients who had failed ICSI. The absence of PLCZ1 in these patients was further confirmed by Western blot, although genomic sequencing failed to reveal conclusive PLCZ1 mutations. Using mouse eggs, we reproduced the failure of sperm from these patients to induce egg activation and rescued it by injection of mouse Plcz1 mRNA. Together, our results indicate that the inability of human sperm to initiate [Ca(2+)](i) oscillations leads to failure of egg activation and sterility and that abnormal PLCZ1 expression underlies this functional defect.


Asian Journal of Andrology | 2011

Ion channels, phosphorylation and mammalian sperm capacitation

Pablo E. Visconti; Dario Krapf; José Luis de la Vega-Beltrán; Juan José Acevedo; Alberto Darszon

Sexually reproducing animals require an orchestrated communication between spermatozoa and the egg to generate a new individual. Capacitation, a maturational complex phenomenon that occurs in the female reproductive tract, renders spermatozoa capable of binding and fusing with the oocyte, and it is a requirement for mammalian fertilization. Capacitation encompasses plasma membrane reorganization, ion permeability regulation, cholesterol loss and changes in the phosphorylation state of many proteins. Novel tools to study sperm ion channels, image intracellular ionic changes and proteins with better spatial and temporal resolution, are unraveling how modifications in sperm ion transport and phosphorylation states lead to capacitation. Recent evidence indicates that two parallel pathways regulate phosphorylation events leading to capacitation, one of them requiring activation of protein kinase A and the second one involving inactivation of ser/thr phosphatases. This review examines the involvement of ion transporters and phosphorylation signaling processes needed for spermatozoa to achieve capacitation. Understanding the molecular mechanisms leading to fertilization is central for societies to deal with rising male infertility rates, to develop safe male gamete-based contraceptives and to preserve biodiversity through better assisted fertilization strategies.


Journal of Biological Chemistry | 2003

Involvement of a Na+/HCO-3 cotransporter in mouse sperm capacitation.

Ignacio A. Demarco; Felipe Espinosa; Jennifer Edwards; Julian Sosnik; José Luis de la Vega-Beltrán; Joel W. Hockensmith; Gregory S. Kopf; Alberto Darszon; Pablo E. Visconti

Mammalian sperm are incapable of fertilizing eggs immediately after ejaculation; they acquire fertilization capacity after residing in the female tract for a finite period of time. The physiological changes sperm undergo in the female reproductive tract that render sperm able to fertilize constitute the phenomenon of “sperm capacitation.” We have demonstrated that capacitation is associated with an increase in the tyrosine phosphorylation of a subset of proteins and that these events are regulated by an HCO 3 − /cAMP-dependent pathway involving protein kinase A. Capacitation is also accompanied by hyperpolarization of the sperm plasma membrane. Here we present evidence that, in addition to its role in the regulation of adenylyl cyclase, HCO 3 − has a role in the regulation of plasma membrane potential in mouse sperm. Addition of HCO 3 − but not Cl− induces a hyperpolarizing current in mouse sperm plasma membranes. This HCO 3 − -dependent hyperpolarization was not observed when Na+ was replaced by the non-permeant cation choline+. Replacement of Na+ by choline+ also inhibited the capacitation-associated increase in protein tyrosine phosphorylation as well as the zona pellucida-induced acrosome reaction. The lack of an increase in protein tyrosine phosphorylation was overcome by the presence of cAMP agonists in the incubation medium. The lack of a hyperpolarizing HCO 3 − current and the inhibition of the capacitation-dependent increase in protein tyrosine phosphorylation in the absence of Na+ suggest that a Na+/HCO 3 − cotransporter is present in mouse sperm and is coupled to events regulating capacitation.


Biology of Reproduction | 2005

Isolation and Proteomic Analysis of Mouse Sperm Detergent-Resistant Membrane Fractions. Evidence for Dissociation of Lipid Rafts During Capacitation

Susan B. Sleight; Patricia V. Miranda; Nia Washington Plaskett; Bernhard Maier; Jeff Lysiak; Heidi Scrable; John C. Herr; Pablo E. Visconti

Abstract Mammalian sperm acquire fertilization capacity after residing in the female tract during a process known as capacitation. The present study examined whether cholesterol efflux during capacitation alters the biophysical properties of the sperm plasma membrane by potentially reducing the extent of lipid raft domains as analyzed by the isolation of detergent-resistant membrane fractions using sucrose gradients. In addition, this work investigated whether dissociation of the detergent-resistant membrane fraction during capacitation alters resident sperm raft proteins. Mouse sperm proteins associated with such fractions were studied by silver staining, tandem mass spectrometry, and Western blot analysis. Caveolin 1 was identified in sperm lipid rafts in multimeric states, including a high-molecular-weight oligomer that is sensitive to degradation under reducing conditions at high pH. Capacitation resulted in reduction of the light buoyant-density, detergent-resistant membrane fraction and decreased the array of proteins isolated within this fraction, including loss of the high-molecular-weight caveolin 1 oligomers. Proteomic analysis of sperm proteins isolated in the light buoyant-density fraction identified several proteins, including hexokinase 1, testis serine proteases 1 and 2, TEX101, hyaluronidase (PH20, SPAM1), facilitated glucose transporter 3, lactate dehydrogenase A, carbonic anhydrase IV, IZUMO, pantophysin, basigin, and cysteine-rich inhibitory secretory protein 1. Capacitation also resulted in a significant reduction of sperm labeling by the fluorescent lipid-analog DiIC16, indicating that capacitation alters the liquid-ordered domains in the sperm plasma membrane. The observations that capacitation alters the protein composition of the detergent-resistant membrane fractions is consistent with the hypothesis that cholesterol efflux during capacitation dissociates lipid raft constituents, initiating signaling events that lead to sperm capacitation.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Understanding the molecular basis of sperm capacitation through kinase design

Pablo E. Visconti

Thirty years ago, on July 25, Steptoe and Edwards reported the birth of Louise Joy Brown, the first successful “Test-Tube” baby (1). This achievement followed a lack of success of in vitro fertilization experiments for almost 80 years since the first attempts in 1878. These early failures were due mainly to a lack of comprehension of sperm physiology. In the early 1950s, Chang (2) and Austin (3) demonstrated independently that sperm had to be in the female reproductive tract for a finite period before acquiring fertilizing capacity. This phenomenon is known as sperm capacitation. What made this finding a necessary step for the consequent development of in vitro fertilization was the understanding that certain factors in the female were needed for the sperm to become fertile. A logical follow-up of the discovery of sperm capacitation occurred some years later when Chang demonstrated mammalian in vitro fertilization conclusively by showing that eggs from a black rabbit fertilized in vitro by capacitated sperm from a black male, and transferred to a white female, resulted in the birth of a litter of black offspring (4).


Reproduction | 2012

Roles of the oviduct in mammalian fertilization

Pilar Coy; Francisco Alberto García-Vázquez; Pablo E. Visconti; Manuel Avilés

The oviduct or Fallopian tube is the anatomical region where every new life begins in mammalian species. After a long journey, the spermatozoa meet the oocyte in the specific site of the oviduct named ampulla and fertilization takes place. The successful fertilization depends on several biological processes that occur in the oviduct some hours before this rendezvous and affect both gametes. Estrogen and progesterone, released from the ovary, orchestrate a series of changes by genomic and nongenomic pathways in the oviductal epithelium affecting gene expression, proteome, and secretion of its cells into the fluid bathing the oviductal lumen. In addition, new regulatory molecules are being discovered playing important roles in oviductal physiology and fertilization. The present review tries to describe these processes, building a comprehensive map of the physiology of the oviduct, to better understand the importance of this organ in reproduction. With this purpose, gamete transport, sperm and oocyte changes in the oviductal environment, and other interactions between gametes and oviduct are discussed in light of recent publications in the field.


Journal of Biological Chemistry | 2010

Inhibition of Ser/Thr Phosphatases Induces Capacitation-associated Signaling in the Presence of Src Kinase Inhibitors

Dario Krapf; Enid Arcelay; Eva Wertheimer; Archana Sanjay; Stephen H. Pilder; Ana M. Salicioni; Pablo E. Visconti

Signaling events leading to mammalian sperm capacitation rely on activation/deactivation of proteins by phosphorylation. This cascade includes soluble adenylyl cyclase, an atypical bicarbonate-stimulated adenylyl cyclase, and is mediated by protein kinase A and the subsequent stimulation of protein tyrosine phosphorylation. Recently, it has been proposed that the capacitation-associated increase in tyrosine phosphorylation is governed by Src tyrosine kinase activity. This conclusion was based mostly on the observation that Src is present in sperm and that the Src kinase family inhibitor SU6656 blocked the capacitation-associated increase in tyrosine phosphorylation. Results in the present manuscript confirmed these observations and provided evidence that these inhibitors were also able to inhibit protein kinase A phosphorylation, sperm motility, and in vitro fertilization. However, the block of capacitation-associated parameters was overcome when sperm were incubated in the presence of Ser/Thr phosphatase inhibitors such as okadaic acid and calyculin-A at concentrations reported to affect only PP2A. Altogether, these data indicate that Src is not directly involved in the observed increase in tyrosine phosphorylation. More importantly, this work presents strong evidence that capacitation is regulated by two parallel pathways. One of them requiring activation of protein kinase A and the second one involving inactivation of Ser/Thr phosphatases.

Collaboration


Dive into the Pablo E. Visconti's collaboration.

Top Co-Authors

Avatar

Gregory S. Kopf

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Dario Krapf

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ana M. Salicioni

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Felipe Navarrete

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Eva Wertheimer

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Julian Sosnik

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Mariano G. Buffone

Instituto de Biología y Medicina Experimental

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

María Gracia Gervasi

University of Massachusetts Amherst

View shared research outputs
Researchain Logo
Decentralizing Knowledge