Pablo G. Guerenstein
National Scientific and Technical Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pablo G. Guerenstein.
Journal of Chemical Ecology | 2004
Corinna Thom; Pablo G. Guerenstein; Wendy L. Mechaber; John G. Hildebrand
The hawkmoth Manducasexta(Lepidoptera: Sphingidae), an experimentally favorable Lepidopteran that is highly sensitive to carbon dioxide (CO2), feeds on the nectar of a range of flowering plants, such as Datura wrightii (Solanaceae). Newly opened Datura flowers give off dramatically elevated levels of CO2 and offer ample nectar. Thus, floral CO2 emission could indicate food-source profitability. This study documents that foraging Manduca moths prefer surrogate flowers that emit high levels of CO2, characteristic of newly opened Datura flowers. We show for the first time that CO2 may play an important role in the foraging behavior of nectar-feeding insects.
Acta Tropica | 2009
Pablo G. Guerenstein; Claudio R. Lazzari
The evolution of triatomine bugs towards haematophagy has demanded different types of adaptations, i.e., morphological, physiological and behavioural. In fact, haematophagy evolved as a secondary adaptation facilitated by frequent vertebrate contact. As derived from other Heteroptera, probably from an entomophagous group, some main morphological pre-adaptations, as piercing mouthparts and sucking pumps were already present. Thus, the most important novel acquisitions of triatomines include physiological and behavioural traits to obtain and handle the blood meal. In this review, we discuss how the sensory system and the behaviour of triatomines have been shaped by natural selection to accomplish the tasks of finding a vertebrate host and getting access to its blood. The feeding behaviour of triatomines is presented in its spatial and temporal context. Finally, some methods to study these topics are described.
Naturwissenschaften | 2004
Pablo G. Guerenstein; Enrico A. Yepez; Joost van Haren; David G. Williams; John G. Hildebrand
As part of a study of the roles of the sensory subsystem devoted to CO2 in the nectar-feeding moth Manduca sexta, we investigated CO2 release and nectar secretion by flowers of Datura wrightii, a preferred hostplant of Manduca. Datura flowers open at dusk and wilt by the following noon. During the first hours after dusk, when Manduca feeds, the flowers produce considerable amounts of nectar and emit levels of CO2 that should be detectable by moths nearby. By midnight, however, both nectar secretion and CO2 release decrease significantly. Because nectar production requires high metabolic activity, high floral CO2 emission may indicate food abundance to the moths. We suggest that hovering moths could use the florally emitted CO2 to help them assess the nectar content before attempting to feed in order to improve their foraging efficiency.
Emerging Infectious Diseases | 2010
Carolina E. Reisenman; Gena G. Lawrence; Pablo G. Guerenstein; Teresa Gregory; Ellen M. Dotson; John G. Hildebrand
A survey of triatomine insects found that 41.5% were infected with the causative agent of Chagas disease.
Journal of Comparative Physiology A-neuroethology Sensory Neural and Behavioral Physiology | 2004
Pablo G. Guerenstein; Thomas A. Christensen; John G. Hildebrand
Insects use information about CO2 to perform vital tasks such as locating food sources. In certain moths, CO2 is involved in oviposition behavior. The labial palps of adult moths that feed as adults have a pit organ containing sensory receptor cells that project into the antennal lobes, the sites of primary processing of olfactory information in the brain. In the moth Manduca sexta and certain other species of Lepidoptera, these receptor cells in the labial-palp pit organ have been shown to be tuned to CO2, and their axons project to a single, identified glomerulus in the antennal lobe, the labial-palp pit organ glomerulus. At present, however, nothing is known about the function of this glomerulus or how CO2 information is processed centrally. We used intracellular recording and staining to reveal projection (output) neurons in the antennal lobes that respond to CO2 and innervate the labial-palp pit organ glomerulus. Our results demonstrate that this glomerulus is the site of first-order processing of sensory information about ambient CO2. We found three functional types of CO2-responsive neurons (with their cell bodies in the antennal lobe or the protocerebrum) that provide output from the antennal lobe to higher centers in the brain. Some physiological characteristics of those neurons are described.
Journal of Physiology-paris | 2014
F. Guidobaldi; I.J. May-Concha; Pablo G. Guerenstein
Several blood-feeding (hematophagous) insects are vectors of a number of diseases including dengue, Chagas disease and leishmaniasis which persistently affect public health throughout Latin America. The vectors of those diseases include mosquitoes, triatomine bugs and sandflies. As vector control is an efficient way to prevent these illnesses it is important to understand the sensory biology of those harmful insects. We study the physiology of the olfactory system of those insects and apply that knowledge on the development of methods to manipulate their behavior. Here we review some of the latest information on insect olfaction with emphasis on hematophagous insects. The insect olfactory sensory neurons are housed inside hair-like organs called sensilla which are mainly distributed on the antenna and mouthparts. The identity of many of the odor compounds that those neurons detect are already known in hematophagous insects. They include several constituents of host (vertebrate) odor, sex, aggregation and alarm pheromones, and compounds related to egg-deposition behavior. Recent work has contributed significant knowledge on how odor information is processed in the insect first odor-processing center in the brain, the antennal lobe. The quality, quantity, and temporal features of the odor stimuli are encoded by the neural networks of the antennal lobe. Information regarding odor mixtures is also encoded. While natural mixtures evoke strong responses, synthetic mixtures that deviate from their natural counterparts in terms of key constituents or proportions of those constituents evoke weaker responses. The processing of olfactory information is largely unexplored in hematophagous insects. However, many aspects of their olfactory behavior are known. As in other insects, responses to relevant single odor compounds are weak while natural mixtures evoke strong responses. Future challenges include studying how information about odor mixtures is processed in their brain. This could help develop highly attractive synthetic odor blends to lure them into traps.
American Journal of Tropical Medicine and Hygiene | 2011
Carolina E. Reisenman; Teresa Gregory; Pablo G. Guerenstein; John G. Hildebrand
Chagas disease is caused by the parasite Trypanosoma cruzi, which is transmitted to humans by blood-sucking triatomine insects. This disease is endemic throughout Mexico and Central and South America, but only a few autochthonous cases have been reported in the United States, despite the fact that infected insects readily invade houses and feed on humans. Competent vectors defecate during or shortly after feeding so that infective feces contact the host. We thus studied the feeding and defecation behaviors of the prevalent species in southern Arizona, Triatoma rubida. We found that whereas defecation during feeding was frequent in females (93%), it was very rare in immature stages (3%), and absent in males. Furthermore, more than half of the immature insects that exhibited multiple feeding bouts (62%) defecated during interruptions of feeding, i.e., while likely on or near the host. These results indicate that T. rubida potentially could transmit T. cruzi to humans.
Journal of Insect Physiology | 2017
Romina B. Barrozo; Carolina E. Reisenman; Pablo G. Guerenstein; Claudio R. Lazzari; Marcelo G. Lorenzo
Although kissing bugs (Triatominae: Reduviidae) are perhaps best known as vectors of Chagas disease, they are important experimental models in studies of insect sensory physiology, pioneered by the seminal studies of Wigglesworth and Gillet more than eighty years ago. Since then, many investigations have revealed that the thermal, hygric, visual and olfactory senses play critical roles in the orientation of these blood-sucking insects towards hosts. Here we review the current knowledge about the role of these sensory systems, focussing on relevant stimuli, sensory structures, receptor physiology and the molecular players involved in the complex and cryptic behavioural repertoire of these nocturnal insects. Odours are particularly relevant, as they are involved in host search and are used for sexual, aggregation and alarm communication. Tastants are critical for a proper recognition of hosts, food and conspecifics. Heat and relative humidity mediate orientation towards hosts and are also important for the selection of resting places. Vision, which mediates negative phototaxis and flight dispersion, is also critical for modulating shelter use and mediating escape responses. The molecular bases underlying the detection of sensory stimuli started to be uncovered by means of functional genetics due to both the recent publication of the genome sequence of Rhodnius prolixus and the availability of modern genome editing techniques.
Frontiers in Physiology | 2016
Carolina E. Reisenman; Hong Lei; Pablo G. Guerenstein
Harmful insects include pests of crops and storage goods, and vectors of human and animal diseases. Throughout their history, humans have been fighting them using diverse methods. The fairly recent development of synthetic chemical insecticides promised efficient crop and health protection at a relatively low cost. However, the negative effects of those insecticides on human health and the environment, as well as the development of insect resistance, have been fueling the search for alternative control tools. New and promising alternative methods to fight harmful insects include the manipulation of their behavior using synthetic versions of “semiochemicals”, which are natural volatile and non-volatile substances involved in the intra- and/or inter-specific communication between organisms. Synthetic semiochemicals can be used as trap baits to monitor the presence of insects, so that insecticide spraying can be planned rationally (i.e., only when and where insects are actually present). Other methods that use semiochemicals include insect annihilation by mass trapping, attract-and- kill techniques, behavioral disruption, and the use of repellents. In the last decades many investigations focused on the neural bases of insects responses to semiochemicals. Those studies help understand how the olfactory system detects and processes information about odors, which could lead to the design of efficient control tools, including odor baits, repellents or ways to confound insects. Here we review our current knowledge about the neural mechanisms controlling olfactory responses to semiochemicals in harmful insects. We also discuss how this neuroethology approach can be used to design or improve pest/vector management strategies.
Infection, Genetics and Evolution | 2016
Irving May-Concha; Pablo G. Guerenstein; Janine M. Ramsey; Julio C. Rojas; Silvia Catalá
Triatoma dimidiata (Latreille) is a species complex that spans North, Central, and South America and which is a key vector of all known discrete typing units (DTU) of Trypanosoma cruzi, the etiologic agent of Chagas disease. Morphological and genetic studies indicate that T. dimidiata is a species complex with three principal haplogroups (hg) in Mexico. Different markers and traits are still inconclusive regarding if other morphological differentiation may indicate probable behavioral and vectorial divergences within this complex. In this paper we compared the antennae of three Mexican haplogroups (previously verified by molecular markers ND4 and ITS-2) and discussed possible relationships with their capacity to disperse and colonized new habitats. The abundance of each type of sensillum (bristles, basiconics, thick- and thin-walled trichoids) on the antennae of the three haplogroups, were measured under light microscopy and compared using Kruskal-Wallis non-parametric and multivariate non-parametric analyses. Discriminant analyses indicate significant differences among the antennal phenotype of haplogroups either for adults and some nymphal stages, indicating consistency of the character to analyze intraspecific variability within the complex. The present study shows that the adult antennal pedicel of the T. dimidiata complex have abundant chemosensory sensilla, according with good capacity for dispersal and invasion of different habitats also related to their high capacity to adapt to conserved as well as modified habitats. However, the numerical differences among the haplogroups are suggesting variations in that capacity. The results here presented support the evidence of T. dimidiata as a species complex but show females and males in a different way. Given the close link between the bugs sensory system and its habitat and host-seeking behavior, AP characterization could be useful to complement genetic, neurological and ethological studies of the closely related Dimidiata Complex haplogroups for a better knowledge of their vectorial capacity and a more robust species differentiation.