Pablo García-Palacios
King Juan Carlos University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pablo García-Palacios.
Science | 2012
Fernando T. Maestre; José L. Quero; Nicholas J. Gotelli; Adrián Escudero; Victoria Ochoa; Manuel Delgado-Baquerizo; Miguel García-Gómez; Matthew A. Bowker; Santiago Soliveres; Cristina Escolar; Pablo García-Palacios; Miguel Berdugo; Enrique Valencia; Beatriz Gozalo; Antonio Gallardo; Lorgio E. Aguilera; Tulio Arredondo; Julio Blones; Bertrand Boeken; Donaldo Bran; Abel Augusto Conceição
Global Ecosystem Analysis The relationship between species richness and the functional properties of their ecosystems has often been studied at small scales in experimental plots. Maestre et al. (p. 214; see the Perspective by Midgley) performed field measurements at 224 dryland sites from six continents and assessed 14 ecosystem functions related to carbon, nitrogen, and phosphorus cycling. Positive relationships were observed between perennial plant species richness and ecosystem functionality. The relative importance of biodiversity was found to be as large as, or larger than, many key abiotic variables. Thus, preservation of plant biodiversity is important to buffer negative effects of climate change and desertification in drylands, which collectively cover 41% of Earths land surface and support over 38% of the human population. Plant species richness is positively related to ecosystem multifunctionality in drylands at a global scale. Experiments suggest that biodiversity enhances the ability of ecosystems to maintain multiple functions, such as carbon storage, productivity, and the buildup of nutrient pools (multifunctionality). However, the relationship between biodiversity and multifunctionality has never been assessed globally in natural ecosystems. We report here on a global empirical study relating plant species richness and abiotic factors to multifunctionality in drylands, which collectively cover 41% of Earth’s land surface and support over 38% of the human population. Multifunctionality was positively and significantly related to species richness. The best-fitting models accounted for over 55% of the variation in multifunctionality and always included species richness as a predictor variable. Our results suggest that the preservation of plant biodiversity is crucial to buffer negative effects of climate change and desertification in drylands.
Ecology Letters | 2009
Fernando T. Maestre; Matthew A. Bowker; María D. Puche; M. Belén Hinojosa; Isabel Martínez; Pablo García-Palacios; Andrea P. Castillo; Santiago Soliveres; Arantzazu L. Luzuriaga; Ana M. Sánchez; José A. Carreira; Antonio Gallardo; Adrián Escudero
The worldwide phenomenon of shrub encroachment in grass-dominated dryland ecosystems is commonly associated with desertification. Studies of the purported desertification effects associated with shrub encroachment are often restricted to relatively few study areas, and document a narrow range of possible impacts upon biota and ecosystem processes. We conducted a study in degraded Mediterranean grasslands dominated by Stipa tenacissima to simultaneously evaluate the effects of shrub encroachment on the structure and composition of multiple biotic community components, and on various indicators of ecosystem function. Shrub encroachment enhanced vascular plant richness, biomass of fungi, actinomycetes and other bacteria, and was linked with greater soil fertility and N mineralization rates. While shrub encroachment may be a widespread phenomenon in drylands, an interpretation that this is an expression of desertification is not universal. Our results suggest that shrub establishment may be an important step in the reversal of desertification processes in the Mediterranean region.
Ecology Letters | 2013
Pablo García-Palacios; Fernando T. Maestre; Jens Kattge; Diana H. Wall
Climate and litter quality have been identified as major drivers of litter decomposition at large spatial scales. However, the role played by soil fauna remains largely unknown, despite its importance for litter fragmentation and microbial activity. We synthesised litterbag studies to quantify the effect sizes of soil fauna on litter decomposition rates at the global and biome scales, and to assess how climate, litter quality and soil fauna interact to determine such rates. Soil fauna consistently enhanced litter decomposition at both global and biome scales (average increment ~ 37%). [corrected]. However, climate and litter quality differently modulated the effects of soil fauna on decomposition rates between biomes, from climate-driven biomes to those where climate effects were mediated by changes in litter quality. Our results advocate for the inclusion of biome-specific soil fauna effects on litter decomposition as a mean to reduce the unexplained variation in large-scale decomposition models.
Philosophical Transactions of the Royal Society B | 2010
Fernando T. Maestre; Matthew A. Bowker; Cristina Escolar; María D. Puche; Santiago Soliveres; Sara Maltez-Mouro; Pablo García-Palacios; Andrea P. Castillo-Monroy; Isabel Martínez; Adrián Escudero
Climate change will exacerbate the degree of abiotic stress experienced by semi-arid ecosystems. While abiotic stress profoundly affects biotic interactions, their potential role as modulators of ecosystem responses to climate change is largely unknown. Using plants and biological soil crusts, we tested the relative importance of facilitative–competitive interactions and other community attributes (cover, species richness and species evenness) as drivers of ecosystem functioning along stress gradients in semi-arid Mediterranean ecosystems. Biotic interactions shifted from facilitation to competition along stress gradients driven by water availability and temperature. These changes were, however, dependent on the spatial scale and the community considered. We found little evidence to suggest that biotic interactions are a major direct influence upon indicators of ecosystem functioning (soil respiration, organic carbon, water-holding capacity, compaction and the activity of enzymes related to the carbon, nitrogen and phosphorus cycles) along stress gradients. However, attributes such as cover and species richness showed a direct effect on ecosystem functioning. Our results do not agree with predictions emphasizing that the importance of plant–plant interactions will be increased under climate change in dry environments, and indicate that reductions in the cover of plant and biological soil crust communities will negatively impact ecosystems under future climatic conditions.
Annual Review of Ecology, Evolution, and Systematics | 2016
Fernando T. Maestre; David J. Eldridge; Santiago Soliveres; Sonia Kéfi; Manuel Delgado-Baquerizo; Matthew A. Bowker; Pablo García-Palacios; Juan J. Gaitán; Antonio Gallardo; Roberto Lázaro; Miguel Berdugo
Understanding how drylands respond to ongoing environmental change is extremely important for global sustainability. Here we review how biotic attributes, climate, grazing pressure, land cover change and nitrogen deposition affect the functioning of drylands at multiple spatial scales. Our synthesis highlights the importance of biotic attributes (e.g. species richness) in maintaining fundamental ecosystem processes such as primary productivity, illustrate how N deposition and grazing pressure are impacting ecosystem functioning in drylands worldwide, and highlight the importance of the traits of woody species as drivers of their expansion in former grasslands. We also emphasize the role of attributes such as species richness and abundance in controlling the responses of ecosystem functioning to climate change. This knowledge is essential to guide conservation and restoration efforts in drylands, as biotic attributes can be actively managed at the local scale to increase ecosystem resilience to global change.
New Phytologist | 2013
Pablo García-Palacios; Rubén Milla; Manuel Delgado-Baquerizo; Nieves Martín-Robles; Mónica Álvaro‐Sánchez; Diana H. Wall
Domestication took plants from natural environments to agro-ecosystems, where resources are generally plentiful and plant life is better buffered against environmental risks such as drought or pathogens. We hypothesized that predictions derived from the comparison of low vs high resource ecosystems (faster-growing plants promoting faster nutrient cycling in the latter) extrapolate to the process of domestication. We conducted the first comprehensive assessment of the consequences of domestication on litter quality and key biogeochemical processes by comparing 24 domesticated crops against their closest wild ancestors. Twelve litter chemistry traits, litter decomposability and indicators of soil carbon (C) and nitrogen (N) cycling were assessed in each domesticated vs wild ancestor pair. These assessments were done in microbial-poor and microbial-rich soils to exemplify intensively and extensively managed agricultural soils, respectively. Plant domestication has increased litter quality, encouraging litter decomposability (36% and 44% increase in the microbial-rich and microbial-poor soils, respectively), higher soil NO3 - availability and lower soil C : N ratios. These effects held true for the majority of the crops surveyed and for soils with different microbial communities. Our results support ecological theory predictions derived from the comparison of low- and high-resource ecosystems, suggesting a parallelism between ecosystem-level impacts of natural and artificial selection.
Global Change Biology | 2017
Kevin R. Wilcox; Zheng Shi; Laureano A. Gherardi; Nathan P. Lemoine; Sally E. Koerner; David L. Hoover; Edward W. Bork; Kerry M. Byrne; James F. Cahill; Scott L. Collins; Sarah E. Evans; Anna Katarina Gilgen; Petr Holub; Lifen Jiang; Alan K. Knapp; Daniel R. LeCain; J. K. Liang; Pablo García-Palacios; Josep Peñuelas; William T. Pockman; Melinda D. Smith; Shanghua Sun; Shannon R. White; Laura Yahdjian; Kai Zhu; Yiqi Luo
Climatic changes are altering Earths hydrological cycle, resulting in altered precipitation amounts, increased interannual variability of precipitation, and more frequent extreme precipitation events. These trends will likely continue into the future, having substantial impacts on net primary productivity (NPP) and associated ecosystem services such as food production and carbon sequestration. Frequently, experimental manipulations of precipitation have linked altered precipitation regimes to changes in NPP. Yet, findings have been diverse and substantial uncertainty still surrounds generalities describing patterns of ecosystem sensitivity to altered precipitation. Additionally, we do not know whether previously observed correlations between NPP and precipitation remain accurate when precipitation changes become extreme. We synthesized results from 83 case studies of experimental precipitation manipulations in grasslands worldwide. We used meta-analytical techniques to search for generalities and asymmetries of aboveground NPP (ANPP) and belowground NPP (BNPP) responses to both the direction and magnitude of precipitation change. Sensitivity (i.e., productivity response standardized by the amount of precipitation change) of BNPP was similar under precipitation additions and reductions, but ANPP was more sensitive to precipitation additions than reductions; this was especially evident in drier ecosystems. Additionally, overall relationships between the magnitude of productivity responses and the magnitude of precipitation change were saturating in form. The saturating form of this relationship was likely driven by ANPP responses to very extreme precipitation increases, although there were limited studies imposing extreme precipitation change, and there was considerable variation among experiments. This highlights the importance of incorporating gradients of manipulations, ranging from extreme drought to extreme precipitation increases into future climate change experiments. Additionally, policy and land management decisions related to global change scenarios should consider how ANPP and BNPP responses may differ, and that ecosystem responses to extreme events might not be predicted from relationships found under moderate environmental changes.
PLOS ONE | 2013
Manuel Delgado-Baquerizo; Fernando T. Maestre; Antonio Gallardo; José L. Quero; Victoria Ochoa; Miguel García-Gómez; Cristina Escolar; Pablo García-Palacios; Miguel Berdugo; Enrique Valencia; Beatriz Gozalo; Zouhaier Noumi; Mchich Derak; Matthew D. Wallenstein
While much is known about the factors that control each component of the terrestrial nitrogen (N) cycle, it is less clear how these factors affect total N availability, the sum of organic and inorganic forms potentially available to microorganisms and plants. This is particularly true for N-poor ecosystems such as drylands, which are highly sensitive to climate change and desertification processes that can lead to the loss of soil nutrients such as N. We evaluated how different climatic, abiotic, plant and nutrient related factors correlate with N availability in semiarid Stipa tenacissima grasslands along a broad aridity gradient from Spain to Tunisia. Aridity had the strongest relationship with N availability, suggesting the importance of abiotic controls on the N cycle in drylands. Aridity appeared to modulate the effects of pH, plant cover and organic C (OC) on N availability. Our results suggest that N transformation rates, which are largely driven by variations in soil moisture, are not the direct drivers of N availability in the studied grasslands. Rather, the strong relationship between aridity and N availability could be driven by indirect effects that operate over long time scales (decades to millennia), including both biotic (e.g. plant cover) and abiotic (e.g. soil OC and pH). If these factors are in fact more important than short-term effects of precipitation on N transformation rates, then we might expect to observe a lagged decrease in N availability in response to increasing aridity. Nevertheless, our results suggest that the increase in aridity predicted with ongoing climate change will reduce N availability in the Mediterranean basin, impacting plant nutrient uptake and net primary production in semiarid grasslands throughout this region.
Ecological Applications | 2011
Pablo García-Palacios; Matthew A. Bowker; Fernando T. Maestre; Santiago Soliveres; Fernando Valladares; Jorge Papadopoulos; Adrián Escudero
Roadside grasslands undergoing secondary succession are abundant, and represent ecologically meaningful examples of novel, human-created ecosystems. Interactions between plant and soil communities (hereafter plant-soil interactions) are of major importance in understanding the role of biotic control in ecosystem functioning, but little is known about these links in the context of ecosystem restoration and succession. The assessment of the key biotic communities and interactions driving ecosystem development will help practitioners to better allocate the limited resources devoted to roadside grassland restoration. We surveyed roadside grasslands from three successional stages (0-2, 7-9, and >20 years) in two Mediterranean regions of Spain. Structural equation modeling was used to evaluate how interactions between plants, biological soil crusts (BSCs), and soil microbial functional diversity (soil microorganisms) affect indicators of ecosystem development and restoration: plant similarity to the reference ecosystem, erosion control, and soil C storage and N accumulation. Changes in plant community composition along the successional gradient exerted the strongest influence on these indicators. High BSC cover was associated with high soil stability, and high soil microbial functional diversity from late-successional stages was associated with high soil fertility. Contrary to our expectations, the indirect effects of plants, mediated by either BSCs or soil microorganisms, were very weak in both regions, suggesting a minor role for plant-soil interactions upon ecosystem development indicators over long periods. Our results suggest that natural vegetation dynamics effectively improved ecosystem development within a time frame of 20 years in the grasslands evaluated. They also indicate that this time could be shortened if management actions focus on: (1) maintaining well-conserved natural areas close to roadsides to enhance plant compositional changes towards late-successional stages, (2) increasing BSC cover in areas under strong erosion risk, to avoid soil loss, and (3) enhancing soil microbial functional diversity in resource-limited areas, to enhance soil C and N accumulation.
Nature Communications | 2016
Zheng Shi; Xia Xu; Lara Souza; Kevin R. Wilcox; Lifen Jiang; J. K. Liang; Jianyang Xia; Pablo García-Palacios; Yiqi Luo
Past global change studies have identified changes in species diversity as a major mechanism regulating temporal stability of production, measured as the ratio of the mean to the standard deviation of community biomass. However, the dominant plant functional group can also strongly determine the temporal stability. Here, in a grassland ecosystem subject to 15 years of experimental warming and hay harvest, we reveal that warming increases while hay harvest decreases temporal stability. This corresponds with the biomass of the dominant C4 functional group being higher under warming and lower under hay harvest. As a secondary mechanism, biodiversity also explains part of the variation in temporal stability of production. Structural equation modelling further shows that warming and hay harvest regulate temporal stability through influencing both temporal mean and variation of production. Our findings demonstrate the joint roles that dominant plant functional group and biodiversity play in regulating the temporal stability of an ecosystem under global change.