Pablo González-Melendi
Technical University of Madrid
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pablo González-Melendi.
BMC Plant Biology | 2009
Eduardo Corredor; P.S. Testillano; María-José Coronado; Pablo González-Melendi; Rodrigo Fernández-Pacheco; C. Marquina; M. Ricardo Ibarra; Jesús M. de la Fuente; Diego Rubiales; Alejandro Pérez-de-Luque; Maria-Carmen Risueño
BackgroundIn recent years, the application of nanotechnology in several fields of bioscience and biomedicine has been studied. The use of nanoparticles for the targeted delivery of substances has been given special attention and is of particular interest in the treatment of plant diseases. In this work both the penetration and the movement of iron-carbon nanoparticles in plant cells have been analyzed in living plants of Cucurbita pepo.ResultsThe nanoparticles were applied in planta using two different application methods, injection and spraying, and magnets were used to retain the particles in movement in specific areas of the plant. The main experimental approach, using correlative light and electron microscopy provided evidence of intracellular localization of nanoparticles and their displacement from the application point. Long range movement of the particles through the plant body was also detected, particles having been found near the magnets used to immobilize and concentrate them. Furthermore, cell response to the nanoparticle presence was detected.ConclusionNanoparticles were capable of penetrating living plant tissues and migrating to different regions of the plant, although movements over short distances seemed to be favoured. These findings show that the use of carbon coated magnetic particles for directed delivery of substances into plant cells is a feasible application.
Cellular Microbiology | 2012
José J. Rodríguez-Herva; Pablo González-Melendi; Raquel Cuartas-Lanza; María Antúnez-Lamas; Isabel Río-Álvarez; Ziduo Li; Gema López-Torrejón; Isabel Díaz; Juan Carlos del Pozo; Suma Chakravarthy; Alan Collmer; Pablo Rodríguez-Palenzuela; Emilia López-Solanilla
The bacterial pathogen Pseudomonas syringae pv tomato DC3000 suppresses plant innate immunity with effector proteins injected by a type III secretion system (T3SS). The cysteine protease effector HopN1, which reduces the ability of DC3000 to elicit programmed cell death in non‐host tobacco, was found to also suppress the production of defence‐associated reactive oxygen species (ROS) and callose when delivered by Pseudomonas fluorescens heterologously expressing a P. syringae T3SS. Purified His6‐tagged HopN1 was used to identify tomato PsbQ, a member of the oxygen evolving complex of photosystem II (PSII), as an interacting protein. HopN1 localized to chloroplasts and both degraded PsbQ and inhibited PSII activity in chloroplast preparations, whereas a HopN1D299A non‐catalytic mutant lost these abilities. Gene silencing of NtPsbQ in tobacco compromised ROS production and programmed cell death by DC3000. Our data reveal PsbQ as a contributor to plant immunity responses and a target for pathogen suppression.
Plant Physiology | 2006
Georgia Drakakaki; Sylvain Marcel; Elsa Arcalis; Friedrich Altmann; Pablo González-Melendi; Rainer Fischer; Paul Christou; Eva Stoger
Recombinant proteins directed to the secretory pathway in plants require a signal peptide for entry into the endoplasmic reticulum. In the absence of further targeting information, such proteins are generally secreted via the default pathway to the apoplast. This has been well documented in protoplasts and leaf tissue, but the trafficking of recombinant proteins in seeds and other storage tissues has rarely been investigated. We used Aspergillus niger phytase as a model glycoprotein to compare the intracellular fate of a recombinant protein in the leaves and seeds of rice (Oryza sativa). Using fluorescence and electron microscopy we showed that the recombinant protein was efficiently secreted from leaf cells as expected. In contrast, within endosperm cells it was retained in endoplasmic reticulum-derived prolamin bodies and protein storage vacuoles. Consistent with our immunolocalization data, the phytase produced in endosperm cells possessed oligomannose and vacuolar-type N-glycans [Man3(Xyl)(Fuc)GlcNAc2], whereas the phytase produced in leaves contained predominantly secretion-type N-glycans [GlcNAc2Man3(Xyl)(Fuc)GlcNAc2]. The latter could not be detected in preparations of the endosperm-derived phytase. Our results show that the intracellular deposition and modification of a recombinant protein is tissue dependent.
Physiologia Plantarum | 2012
M. Martinez; Inés Cambra; Pablo González-Melendi; María E. Santamaría; Isabel Diaz
Plant cysteine-proteases (CysProt) represent a well-characterized type of proteolytic enzymes that fulfill tightly regulated physiological functions (senescence and seed germination among others) and defense roles. This article is focused on the group of papain-proteases C1A (family C1, clan CA) and their inhibitors, phytocystatins (PhyCys). In particular, the protease-inhibitor interaction and their mutual participation in specific pathways throughout the plants life are reviewed. C1A CysProt and PhyCys have been molecularly characterized, and comparative sequence analyses have identified consensus functional motifs. A correlation can be established between the number of identified CysProt and PhyCys in angiosperms. Thus, evolutionary forces may have determined a control role of cystatins on both endogenous and pest-exogenous proteases in these species. Tagging the proteases and inhibitors with fluorescence proteins revealed common patterns of subcellular localization in the endoplasmic reticulum-Golgi network in transiently transformed onion epidermal cells. Further in vivo interactions were demonstrated by bimolecular fluorescent complementation, suggesting their participation in the same physiological processes.
Biology of the Cell | 2005
Ivett Bárány; Pablo González-Melendi; Judit Mitykó; María Carmen Risueño; P.S. Testillano
Background information. In vitro‐cultured microspores, after an appropriate stress treatment, can switch towards an embryogenic pathway. This process, known as microspore embryogenesis, is an important tool in plant breeding. Basic studies on this process in economically interesting crops, especially in recalcitrant plants, are very limited and the sequence of events is poorly understood. In situ studies are very convenient for an appropriate dissection of microspore embryogenesis, a process in which a mixture of different cell populations (induced and non‐induced) develop asynchronically.
Journal of Experimental Botany | 2014
Mercedes Diaz-Mendoza; Blanca Velasco-Arroyo; Pablo González-Melendi; M. Martinez; Isabel Diaz
Senescence-associated proteolysis in plants is a crucial process to relocalize nutrients from leaves to growing or storage tissues. The massive net degradation of proteins involves broad metabolic networks, different subcellular compartments, and several types of proteases and regulators. C1A cysteine proteases, grouped as cathepsin L-, B-, H-, and F-like according to their gene structures and phylogenetic relationships, are the most abundant enzymes responsible for the proteolytic activity during leaf senescence. Besides, cystatins as specific modulators of C1A peptidase activities exert a complex regulatory role in this physiological process. This overview article covers the most recent information on C1A proteases in leaf senescence in different plant species. Particularly, it is focussed on barley, as the unique species where the whole gene family members of C1A cysteine proteases and cystatins have been analysed.
PLOS ONE | 2012
María E. Santamaría; Inés Cambra; M. Martinez; Clara Pozancos; Pablo González-Melendi; Vojislava Grbic; Pedro Castañera; Félix Ortego; Isabel Diaz
The two-spotted spider mite Tetranychus urticae is a damaging pest worldwide with a wide range of host plants and an extreme record of pesticide resistance. Recently, the complete T. urticae genome has been published and showed a proliferation of gene families associated with digestion and detoxification of plant secondary compounds which supports its polyphagous behaviour. To overcome spider mite adaptability a gene pyramiding approach has been developed by co-expressing two barley proteases inhibitors, the cystatin Icy6 and the trypsin inhibitor Itr1 genes in Arabidopsis plants by Agrobacterium-mediated transformation. The presence and expression of both transgenes was studied by conventional and quantitative real time RT-PCR assays and by indirect ELISA assays. The inhibitory activity of cystatin and trypsin inhibitor was in vitro analysed using specific substrates. Single and double transformants were used to assess the effects of spider mite infestation. Double transformed lines showed the lowest damaged leaf area in comparison to single transformants and non-transformed controls and different accumulation of H2O2 as defence response in the leaf feeding site, detected by diaminobenzidine staining. Additionally, an impact on endogenous mite cathepsin B- and L-like activities was observed after feeding on Arabidopsis lines, which correlates with a significant increase in the mortality of mites fed on transformed plants. These effects were analysed in view of the expression levels of the target mite protease genes, C1A cysteine peptidase and S1 serine peptidase, identified in the four developmental mite stages (embryo, larvae, nymphs and adults) performed using the RNA-seq information available at the BOGAS T. urticae database. The potential of pyramiding different classes of plant protease inhibitors to prevent plant damage caused by mites as a new tool to prevent pest resistance and to improve pest control is discussed.
Journal of Experimental Botany | 2008
Pablo González-Melendi; Magalie Uyttewaal; César N. Morcillo; José R. Hernández Mora; Susana Fajardo; Françoise Budar; M. Mercedes Lucas
Ogura cytoplasmic male sterility (CMS) occurs naturally in radish and has been introduced into rapeseed (Brassica napus) by protoplast fusion. As with all CMS systems, it involves a constitutively expressed mitochondrial gene which induces male sterility to otherwise hermaphroditic plants (so they become females) and a nuclear gene named restorer of fertility that restores pollen production in plants carrying a sterility-inducing cytoplasm. A correlative approach using light and electron microscopy was applied to define what stages throughout development were affected and the subcellular events leading to the abortion of the developing pollen grains upon the expression of the mitochondrial protein. Three central stages of development (tetrad, mid-microspore and vacuolate microspore) were compared between fertile, restored, and sterile plants. At each stage observed, the pollen in fertile and restored plants had similar cellular structures and organization. The deleterious effect of the sterility protein expression started as early as the tetrad stage. No typical mitochondria were identified in the tapetum at any developmental stage and in the vacuolate microspores of the sterile plants. In addition, some striking ultrastructural alterations of the cells organization were also observed compared with the normal pattern of development. The results showed that Ogu-INRA CMS was due to premature cell death events of the tapetal cells, presumably by an autolysis process rather than a normal PCD, which impairs pollen development at the vacuolate microspore stage, in the absence of functional mitochondria.
Planta | 2005
Pablo González-Melendi; Carmen Ramírez; P.S. Testillano; Jochen Kumlehn; María Carmen Risueño
In order to determine the timing and mechanisms of the spontaneous diploidisation throughout microspore-derived embryogenesis in barley, we have estimated the ploidy level of individual nuclei within young pro-embryos, from the first androgenetic division up to multinuclear structures still surounded by the exine. Our methodological approach was based on the measure of the intensity of fluorescence after 4,6-Diamidino-2-phenylindole dihydrochloride staining, nuclear size and number of nucleoli in the confocal microscope. This method avoids the overlapping of the fluorescence signal in multinuclear pro-embryos, which cannot be studied using cytophotometer methods based on other types of fluorescence microscopes. The identification of haploid and diploid nuclei enabled us to determine the timing of diploidisation at early stages throughout androgenetic development. We found that diploidisation is an ongoing process that can start after the first embyogenic division and continues in multinuclear pro-embryos. Reconstruction of 3D-images of entire pro-embryos and the observation of cross and longitudinal sections across stacks of optical sections, together with correlative light and electron microscopy, provided evidences of nuclear fusion as the main mechanism of diploidisation.
Cytogenetic and Genome Research | 2005
P.S. Testillano; Pablo González-Melendi; María-José Coronado; José M. Seguí-Simarro; M.A. Moreno-Risueño; M.C. Risueño
The immature pollen grain, the microspore, under stress conditions can switch its developmental program towards proliferation and embryogenesis. The comparison between the gametophytic and sporophytic pathways followed by the microspore permitted us to analyse the nuclear changes in plant differentiating cells when switched to proliferation. The nucleus is highly dynamic, the architecture of its well organised functional domains – condensed chromatin, interchromatin region, nuclear bodies and nucleolus – changing in response to DNA replication, RNA transcription, processing and transport. In the present work, the rearrangements of the nuclear domains during the switch to proliferation have been determined by in situ molecular identification methods for the subcellular localization of chromatin at different functional states, rDNA, elements of the nuclear machinery (PCNA, splicing factors), signalling and stress proteins. The study of the changes in the nuclear domains was determined by a correlative approach at confocal and electron microscopy levels. The results showed that the switch of the developmental program and the activation of the proliferative activity affected the functional organization of the nuclear domains, which accordingly changed their architecture and functional state. A redistribution of components, among them various signalling molecules which targeted structures within the interchromatin region upon translocation from the cytoplasm, was also observed.