Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pablo I. Hurtado is active.

Publication


Featured researches published by Pablo I. Hurtado.


Physical Review Letters | 2005

Entangled Networks, Synchronization, and Optimal Network Topology

L. Donetti; Pablo I. Hurtado; Miguel A. Muñoz

A new family of graphs, entangled networks, with optimal properties in many respects, is introduced. By definition, their topology is such that it optimizes synchronizability for many dynamical processes. These networks are shown to have an extremely homogeneous structure: degree, node distance, betweenness, and loop distributions are all very narrow. Also, they are characterized by a very interwoven (entangled) structure with short average distances, large loops, and no well-defined community structure. This family of nets exhibits an excellent performance with respect to other flow properties such as robustness against errors and attacks, minimal first-passage time of random walks, efficient communication, etc. These remarkable features convert entangled networks in a useful concept, optimal or almost optimal in many senses, and with plenty of potential applications in computer science or neuroscience.


Physical Review Letters | 2007

Heterogeneous diffusion in a reversible gel

Pablo I. Hurtado; Ludovic Berthier; Walter Kob

We introduce a microscopically realistic model of a physical gel and use computer simulations to study its static and dynamic properties at thermal equilibrium. The phase diagram comprises a sol phase, a coexistence region ending at a critical point, a gelation line determined by geometric percolation, and an equilibrium gel phase unrelated to phase separation. The global structure of the gel is homogeneous, but the stress is only supported by a fractal network. The gel dynamics is highly heterogeneous and we propose a theoretical model to quantitatively describe dynamic heterogeneity in gels. We elucidate several differences between the dynamics of gels and that of glass formers.


Physical Review Letters | 2001

Simple One-Dimensional Model of Heat Conduction which Obeys Fourier's Law

P. L. Garrido; Pablo I. Hurtado; B. Nadrowski

We present the computer simulation results of a chain of hard-point particles with alternating masses interacting on its extremes with two thermal baths at different temperatures. We found that the system obeys Fouriers law at the thermodynamic limit. This result is against the actual belief that one-dimensional systems with momentum conservative dynamics and nonzero pressure have infinite thermal conductivity. It seems that thermal resistivity occurs in our system due to a cooperative behavior in which light particles tend to absorb much more energy than the heavier ones.


Physical Review Letters | 2011

Spontaneous Symmetry Breaking at the Fluctuating Level

Pablo I. Hurtado; P. L. Garrido

Phase transitions not allowed in equilibrium steady states may happen, however, at the fluctuating level. We observe for the first time this striking and general phenomenon measuring current fluctuations in an isolated diffusive system. While small fluctuations result from the sum of weakly correlated local events, for currents above a critical threshold the system self-organizes into a coherent traveling wave which facilitates the current deviation by gathering energy in a localized packet, thus breaking translation invariance. This results in Gaussian statistics for small fluctuations but non-Gaussian tails above the critical current. Our observations, which agree with predictions derived from hydrodynamic fluctuation theory, strongly suggest that rare events are generically associated with coherent, self-organized patterns which enhance their probability.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Symmetries in fluctuations far from equilibrium

Pablo I. Hurtado; Carlos Pérez-Espigares; Jesús J. del Pozo; P. L. Garrido

Fluctuations arise universally in nature as a reflection of the discrete microscopic world at the macroscopic level. Despite their apparent noisy origin, fluctuations encode fundamental aspects of the physics of the system at hand, crucial to understand irreversibility and nonequilibrium behavior. To sustain a given fluctuation, a system traverses a precise optimal path in phase space. Here we show that by demanding invariance of optimal paths under symmetry transformations, new and general fluctuation relations valid arbitrarily far from equilibrium are unveiled. This opens an unexplored route toward a deeper understanding of nonequilibrium physics by bringing symmetry principles to the realm of fluctuations. We illustrate this concept studying symmetries of the current distribution out of equilibrium. In particular we derive an isometric fluctuation relation that links in a strikingly simple manner the probabilities of any pair of isometric current fluctuations. This relation, which results from the time-reversibility of the dynamics, includes as a particular instance the Gallavotti–Cohen fluctuation theorem in this context but adds a completely new perspective on the high level of symmetry imposed by time-reversibility on the statistics of nonequilibrium fluctuations. The new symmetry implies remarkable hierarchies of equations for the current cumulants and the nonlinear response coefficients, going far beyond Onsager’s reciprocity relations and Green–Kubo formulas. We confirm the validity of the new symmetry relation in extensive numerical simulations, and suggest that the idea of symmetry in fluctuations as invariance of optimal paths has far-reaching consequences in diverse fields.


Physical Review Letters | 2009

Test of the Additivity Principle for Current Fluctuations in a Model of Heat Conduction

Pablo I. Hurtado; P. L. Garrido

The additivity principle allows to compute the current distribution in many one-dimensional (1D) nonequilibrium systems. Using simulations, we confirm this conjecture in the 1D Kipnis-Marchioro-Presutti model of heat conduction for a wide current interval. The current distribution shows both Gaussian and non-Gaussian regimes, and obeys the Gallavotti-Cohen fluctuation theorem. We verify the existence of a well-defined temperature profile associated to a given current fluctuation. This profile is independent of the sign of the current, and this symmetry extends to higher-order profiles and spatial correlations. We also show that finite-time joint fluctuations of the current and the profile are described by the additivity functional. These results suggest the additivity hypothesis as a general and powerful tool to compute current distributions in many nonequilibrium systems.


Journal of Statistical Mechanics: Theory and Experiment | 2009

Current fluctuations and statistics during a large deviation event in an exactly solvable transport model

Pablo I. Hurtado; P. L. Garrido

We study the distribution of the time-integrated current in an exactly solvable toy model of heat conduction, both analytically and numerically. The simplicity of the model allows us to derive the full current large deviation function and the system statistics during a large deviation event. In this way we unveil a relation between system statistics at the end of a large deviation event and for intermediate times. The mid-time statistics is independent of the sign of the current, a reflection of the time-reversal symmetry of microscopic dynamics, while the end-time statistics does depend on the current sign, and also on its microscopic definition. We compare our exact results with simulations based on the direct evaluation of large deviation functions, analyzing the finite-size corrections of this simulation method and deriving detailed bounds for its applicability. We also show how the Gallavotti–Cohen fluctuation theorem can be used to determine the range of validity of simulation results.


Physical Review E | 2006

Metastability, nucleation, and noise-enhanced stabilization out of equilibrium.

Pablo I. Hurtado; J. Marro; P. L. Garrido

We study metastability and nucleation in a kinetic two-dimensional Ising model that is driven out of equilibrium by a small random perturbation of the usual dynamics at temperature T. We show that, at a mesoscopic/cluster level, a nonequilibrium potential describes in a simple way metastable states and their decay. We thus predict noise-enhanced stability of the metastable phase and resonant propagation of domain walls at low T. This follows from the nonlinear interplay between thermal and nonequilibrium fluctuations, which induces reentrant behavior of the surface tension as a function of T. Our results, which are confirmed by Monte Carlo simulations, can be also understood in terms of a Langevin equation with competing additive and multiplicative noises.


Physical Review Letters | 2011

Large fluctuations in driven dissipative media.

A. Prados; Antonio Lasanta; Pablo I. Hurtado

We analyze the fluctuations of the dissipated energy in a simple and general model where dissipation, diffusion, and driving are the key ingredients. The full dissipation distribution, which follows from hydrodynamic fluctuation theory, shows non-Gaussian tails and no negative branch, thus violating the fluctuation theorem as expected from the irreversibility of the dynamics. It exhibits simple scaling forms in the weak- and strong-dissipation limits, with large fluctuations favored in the former case but strongly suppressed in the latter. The typical path associated with a given dissipation fluctuation is also analyzed in detail. Our results, confirmed in extensive simulations, strongly support the validity of hydrodynamic fluctuation theory to describe fluctuating behavior in driven dissipative media.


Physical Review E | 2013

Dynamical phase transition for current statistics in a simple driven diffusive system

Carlos P. Espigares; P. L. Garrido; Pablo I. Hurtado

We consider fluctuations of the time-averaged current in the one-dimensional weakly-asymmetric exclusion process on a ring. The optimal density profile which sustains a given fluctuation exhibits an instability for low enough currents, where it becomes time-dependent. This instability corresponds to a dynamical phase transition in the system fluctuation behavior: while typical current fluctuations result from the sum of weakly-correlated local events and are still associated with the flat, steady-state density profile, for currents below a critical threshold the system self-organizes into a macroscopic jammed state in the form of a coherent traveling wave, that hinders transport of particles and thus facilitates a time-averaged current fluctuation well below the average current. We analyze in detail this phenomenon using advanced Monte Carlo simulations, and work out macroscopic fluctuation theory predictions, finding very good agreement in all cases. In particular, we study not only the current large deviation function, but also the critical current threshold, the associated optimal density profiles and the traveling wave velocity, analyzing in depth finite-size effects and hence providing a detailed characterization of the dynamical transition.

Collaboration


Dive into the Pablo I. Hurtado's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Marro

University of Granada

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Prados

University of Seville

View shared research outputs
Top Co-Authors

Avatar

Antonio Lasanta

University of Extremadura

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Walter Kob

University of Montpellier

View shared research outputs
Researchain Logo
Decentralizing Knowledge