Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pablo Imbach is active.

Publication


Featured researches published by Pablo Imbach.


Environmental Conservation | 2014

Synergies and trade-offs between ecosystem services in Costa Rica

Bruno Locatelli; Pablo Imbach; Sven Wunder

SUMMARY Ecosystems services have become a key concept in understanding the way humans benefit from ecosystems. In Costa Rica, a pioneer national scheme of payment provides compensation for forest conservation that is assumed to jointly produce services related to biodiversity conservation, carbon storage, water and scenic beauty, but little is known


Journal of Hydrometeorology | 2012

Modeling Potential Equilibrium States of Vegetation and Terrestrial Water Cycle of Mesoamerica under Climate Change Scenarios

Pablo Imbach; Luis Guillermo Molina; Bruno Locatelli; Olivier Roupsard; Gil Mahé; Ronald P. Neilson; Lenin Corrales; Marko Scholze; Philippe Ciais

The likelihood and magnitude of the impacts of climate change on potential vegetation and the water cycle in Mesoamerica is evaluated. Mesoamerica is a global biodiversity hotspot with highly diverse topographic and climatic conditions and is among the tropical regions with the highest expected changes in precipitation and temperature under future climate scenarios. The biogeographic soil-vegetation-atmosphere model Mapped Atmosphere Plant Soil System (MAPSS) was used for simulating the integrated changes in leaf area index (LAI), vegetation types (grass, shrubs, and trees), evapotranspiration, and runoff at the end of the twenty-first century. Uncertainty was estimated as the likelihood of changes in vegetation and water cycle under three ensembles of model runs, one for each of the groups of greenhouse gas emission scenarios (low, intermediate, and high emissions), for a total of 136 runs generated with 23 general circulation models (GCMs). LAI is likely to decrease over 77%-89% of the region, depending on climate scenario groups, showing that potential vegetation will likely shift from humid to dry types. Accounting for potential effects of CO2 on water use efficiency significantly decreased impacts on LAI. Runoff will decrease across the region even in areas where precipitation increases (even under increased water use efficiency), as temperature change will increase evapotranspiration. Higher emission scenarios show lower uncertainty (higher likelihood) in modeled impacts. Although the projection spread is high for future precipitation, the impacts of climate change on vegetation and water cycle are predicted with relatively low uncertainty.


Ecology and Evolution | 2013

Climate change and plant dispersal along corridors in fragmented landscapes of Mesoamerica

Pablo Imbach; Bruno Locatelli; Luis Guillermo Molina; Philippe Ciais; Paul W. Leadley

Climate change is a threat to biodiversity, and adaptation measures should be considered in biodiversity conservation planning. Protected areas (PA) are expected to be impacted by climate change and improving their connectivity with biological corridors (BC) has been proposed as a potential adaptation measure, although assessing its effectiveness remains a challenge. In Mesoamerica, efforts to preserve the biodiversity have led to the creation of a regional network of PA and, more recently, BC. This study evaluates the role of BC for facilitating plant dispersal between PA under climate change in Mesoamerica. A spatially explicit dynamic model (cellular automaton) was developed to simulate species dispersal under different climate and conservation policy scenarios. Plant functional types (PFT) were defined based on a range of dispersal rates and vegetation types to represent the diversity of species in the region. The impacts of climate change on PA and the role of BC for dispersal were assessed spatially. Results show that most impacted PA are those with low altitudinal range in hot, dry, or high latitude areas. PA with low altitudinal range in high cool areas benefit the most from corridors. The most important corridors cover larger areas and have high altitude gradients. Only the fastest PFT can keep up with the expected change in climate and benefit from corridors for dispersal. We conclude that the spatial assessment of the vulnerability of PA and the role of corridors in facilitating dispersal can help conservation planning under a changing climate.


Climatic Change | 2017

Mapping climate change adaptive capacity and vulnerability of smallholder agricultural livelihoods in Central America: ranking and descriptive approaches to support adaptation strategies

Claudia Bouroncle; Pablo Imbach; Beatriz Rodríguez-Sánchez; Claudia Medellín; Armando Martinez-Valle; Peter Läderach

Climate change is one of the main threats to rural livelihoods in Central America, especially for small and medium-sized farmers. Climate change vulnerability assessment (CCVA) integrates biophysical and socioeconomic information to support policy decisions. We present a CCVA of agricultural livelihoods of four countries in Central America, at the municipality level. We use the IPCC definition of vulnerability, and address the potential impact of climate change on suitability for major crops and adaptive capacity using indicators of basic human needs, as well as resources for innovation and action framed in a livelihoods approach. Adaptive capacity was estimated using ranking techniques for municipalities and descriptive multivariate analysis. Projected changes in climate suitability for crops show a wide variation between Guatemala, El Salvador, Honduras and Nicaragua, and within each country. Cluster analysis of adaptive capacity values shows a gradient between higher values close to urban areas and lower values in agricultural frontier areas and in those prone to drought. Municipalities with a high proportional area under subsistence crops tend to have less resources to promote innovation and action for adaptation. Our results suggest that a full spectrum of adaptation levels and strategies must be considered in the region to achieve different adaptation goals. They also show that the adaptive capacity ranking and characterization are complementary and support geographical prioritization and identification of adaptation strategies, respectively.


Climatic Change | 2017

Mapping adaptive capacity and smallholder agriculture: applying expert knowledge at the landscape scale

Margaret B. Holland; Sierra Zaid Shamer; Pablo Imbach; Juan Carlos Zamora; Claudia Medellin Moreno; Efraín José Leguía Hidalgo; Camila I. Donatti; M. Ruth Martínez-Rodríguez; Celia A. Harvey

The impacts of climate change exacerbate the myriad challenges faced by smallholder farmers in the Tropics. In many of these same regions, there is a lack of current, consistent, and spatially-explicit data, which severely limits the ability to locate smallholder communities, map their adaptive capacity, and target adaptation measures to these communities. To explore the adaptive capacity of smallholder farmers in three data-poor countries in Central America, we leveraged expert input through in-depth mapping interviews to locate agricultural landscapes, identify smallholder farming systems within them, and characterize different components of farmer adaptive capacity. We also used this input to generate an index of adaptive capacity that allows for comparison across countries and farming systems. Here, we present an overview of the expert method used, followed by an examination of our results, including the intercountry variation in expert knowledge and the characterization of adaptive capacity for both subsistence and smallholder coffee farmers. While this approach does not replace the need to collect regular and consistent data on farming systems (e.g. agricultural census), our study demonstrates a rapid assessment approach for using expert input to fill key data gaps, enable trans-boundary comparisons, and to facilitate the identification of the most vulnerable smallholder communities for adaptation planning in data-poor environments that are typical of tropical regions. One potential benefit from incorporating this approach is that it facilitates the systematic consideration of field-based and regional experience into assessments of adaptive capacity, contributing to the relevance and utility of adaptation plans.


Climatic Change | 2017

Regional modeling of climate change impacts on smallholder agriculture and ecosystems in Central America

Lee Hannah; Camila I. Donatti; Celia A. Harvey; Eric J. Alfaro; Daniel Andres Rodriguez; Claudia Bouroncle; Edwin Castellanos; Freddy Diaz; Emily Fung; Hugo G. Hidalgo; Pablo Imbach; Peter Läderach; Jason P. Landrum; Ana Lucía Solano

Climate change will have serious repercussions for agriculture, ecosystems, and farmer livelihoods in Central America. Smallholder farmers are particularly vulnerable due to their reliance on agriculture and ecosystem services for their livelihoods. There is an urgent need to develop national and local adaptation responses to reduce these impacts, yet evidence from historical climate change is fragmentary. Modeling efforts help bridge this gap. Here, we review the past decade of research on agricultural and ecological climate change impact models for Central America. The results of this review provide insights into the expected impacts of climate change and suggest policy actions that can help minimize these impacts. Modeling indicates future climate-driven changes, often declines, in suitability for Central American crops. Declines in suitability for coffee, a central crop in the regional economy, are noteworthy. Ecosystem models suggest that climate-driven changes are likely at low- and high-elevation montane forest transitions. Modeling of vulnerability suggests that smallholders in many parts of the region have one or more vulnerability factors that put them at risk. Initial adaptation policies can be guided by these existing modeling results. At the same time, improved modeling is being developed that will allow policy action specifically targeted to vulnerable groups, crops, and locations. We suggest that more robust modeling of ecological responses to climate change, improved representation of the region in climate models, and simulation of climate influences on crop yields and diseases (especially coffee leaf rust) are key priorities for future research.


Climatic Change | 2017

Projections of climate change impacts on central America tropical rainforest

André Lyra; Pablo Imbach; Daniel Andres Rodriguez; Sin Chan Chou; Selena Georgiou; Lucas Garofolo

Tropical rainforest plays an important role in the global carbon cycle, accounting for a large part of global net primary productivity and contributing to CO2 sequestration. The objective of this work is to simulate potential changes in the rainforest biome in Central America subject to anthropogenic climate change under two emissions scenarios, RCP4.5 and RCP8.5. The use of a dynamic vegetation model and climate change scenarios is an approach to investigate, assess or anticipate how biomes respond to climate change. In this work, the Inland dynamic vegetation model was driven by the Eta regional climate model simulations. These simulations accept boundary conditions from HadGEM2-ES runs in the two emissions scenarios. The possible consequences of regional climate change on vegetation properties, such as biomass, net primary production and changes in forest extent and distribution, were investigated. The Inland model projections show reductions in tropical forest cover in both scenarios. The reduction of tropical forest cover is greater in RCP8.5. The Inland model projects biomass increases where tropical forest remains due to the CO2 fertilization effect. The future distribution of predominant vegetation shows that some areas of tropical rainforest in Central America are replaced by savannah and grassland in RCP4.5. Inland projections under both RCP4.5 and RCP8.5 show a net primary productivity reduction trend due to significant tropical forest reduction, temperature increase, precipitation reduction and dry spell increments, despite the biomass increases in some areas of Costa Rica and Panama. This study may provide guidance to adaptation studies of climate change impacts on the tropical rainforests in Central America.


Global Biogeochemical Cycles | 2015

Spatial and temporal contrasts in the distribution of crops and pastures across Amazonia: A new agricultural land use data set from census data since 1950

Pablo Imbach; M. Manrow; Elizabeth Barona; A. Barretto; Glenn Hyman; Philippe Ciais

Amazonia holds the largest continuous area of tropical forests with intense land use change dynamics inducing water, carbon, and energy feedbacks with regional and global impacts. Much of our knowledge of land use change in Amazonia comes from studies of the Brazilian Amazon, which accounts for two thirds of the region. Amazonia outside of Brazil has received less attention because of the difficulty of acquiring consistent data across countries. We present here an agricultural statistics database of the entire Amazonia region, with a harmonized description of crops and pastures in geospatial format, based on administrative boundary data at the municipality level. The spatial coverage includes countries within Amazonia and spans censuses and surveys from 1950 to 2012. Harmonized crop and pasture types are explored by grouping annual and perennial cropping systems, C3 and C4 photosynthetic pathways, planted and natural pastures, and main crops. Our analysis examined the spatial pattern of ratios between classes of the groups and their correlation with the agricultural extent of crops and pastures within administrative units of the Amazon, by country, and census/survey dates. Significant correlations were found between all ratios and the fraction of agricultural lands of each administrative unit, with the exception of planted to natural pastures ratio and pasture lands extent. Brazil and Peru in most cases have significant correlations for all ratios analyzed even for specific census and survey dates. Results suggested improvements, and potential applications of the database for carbon, water, climate, and land use change studies are discussed. The database presented here provides an Amazon-wide improved data set on agricultural dynamics with expanded temporal and spatial coverage. Key Points Agricultural census database covers Amazon basin municipalities from 1950 to 2012 Harmonized database groups crops and pastures by cropping system, C3/C4, and main crops We explored correlations between groups and the extent of agricultural lands


PLOS ONE | 2016

Dynamics of Ecosystem Services during Forest Transitions in Reventazón, Costa Rica

Ameline Vallet; Bruno Locatelli; Harold Levrel; Christian Brenes Pérez; Pablo Imbach; Natalia Estrada Carmona; Raphaël Manlay; Johan Oszwald

The forest transition framework describes the temporal changes of forest areas with economic development. A first phase of forest contraction is followed by a second phase of expansion once a turning point is reached. This framework does not differentiate forest types or ecosystem services, and describes forests regardless of their contribution to human well-being. For several decades, deforestation in many tropical regions has degraded ecosystem services, such as watershed regulation, while increasing provisioning services from agriculture, for example, food. Forest transitions and expansion have been observed in some countries, but their consequences for ecosystem services are often unclear. We analyzed the implications of forest cover change on ecosystem services in Costa Rica, where a forest transition has been suggested. A review of literature and secondary data on forest and ecosystem services in Costa Rica indicated that forest transition might have led to an ecosystem services transition. We modeled and mapped the changes of selected ecosystem services in the upper part of the Reventazón watershed and analyzed how supply changed over time in order to identify possible transitions in ecosystem services. The modeled changes of ecosystem services is similar to the second phase of a forest transition but no turning point was identified, probably because of the limited temporal scope of the analysis. Trends of provisioning and regulating services and their tradeoffs were opposite in different spatial subunits of our study area, which highlights the importance of scale in the analysis of ecosystem services and forest transitions. The ecosystem services transition framework proposed in this study is useful for analyzing the temporal changes of ecosystem services and linking socio-economic drivers to ecosystem services demand at different scales.


Climatic Change | 2017

Climate change influences on pollinator, forest, and farm interactions across a climate gradient

Lee Hannah; Marc Steele; Emily Fung; Pablo Imbach; Lorraine E. Flint; Alan L. Flint

Climate impact models are often implemented at horizontal resolutions (“scales”) too coarse to be readily applied in local impact assessments. However, recent advancements in fine-scale modeling are allowing the creation of impact models that can be applied to landscape-scale adaptation planning. Here, we illustrate the use of fine-scale impact models for landscape-scale adaptation planning of pollination services for six sites in Central America. The strategies include the identification of (1) potential reservoir areas that may retain bee diversity and serve as a source of recolonization after climate shocks such as droughts; and (2) potential restoration areas, where improving forest cover is likely to lead to increases in pollinator services both in the present and in the future. Coarse-scale (>1-km horizontal resolution) climatic controls on pollinator diversity and forest cover determine the general location of these areas in our six landscapes. Fine-scale (<100-m horizontal resolution) variation in climatic water deficit provides an index of forest health which can help identify intervention strategies within these zones. All sites have significant areas in which protecting or restoring forest cover is likely to enhance pollination services. The gradient in rainfall change across the study sites dictates choice of adaptation strategies.

Collaboration


Dive into the Pablo Imbach's collaboration.

Top Co-Authors

Avatar

Bruno Locatelli

Center for International Forestry Research

View shared research outputs
Top Co-Authors

Avatar

Claudia Bouroncle

Centro Agronómico Tropical de Investigación y Enseñanza

View shared research outputs
Top Co-Authors

Avatar

Juan Carlos Zamora

Centro Agronómico Tropical de Investigación y Enseñanza

View shared research outputs
Top Co-Authors

Avatar

Luis Guillermo Molina

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Claudia Medellín

Centro Agronómico Tropical de Investigación y Enseñanza

View shared research outputs
Top Co-Authors

Avatar

Emily Fung

Centro Agronómico Tropical de Investigación y Enseñanza

View shared research outputs
Top Co-Authors

Avatar

Selena Georgiou

Centro Agronómico Tropical de Investigación y Enseñanza

View shared research outputs
Top Co-Authors

Avatar

Lee Hannah

University of California

View shared research outputs
Top Co-Authors

Avatar

Andreea Nowak

International Center for Tropical Agriculture

View shared research outputs
Top Co-Authors

Avatar

Caitlin Corner-Dolloff

International Center for Tropical Agriculture

View shared research outputs
Researchain Logo
Decentralizing Knowledge