Pablo Jaque
Pontifical Catholic University of Chile
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pablo Jaque.
Journal of Chemical Physics | 2002
Pablo Jaque; Alejandro Toro-Labbé
In this paper we study nine neutral copper clusters through the theoretical characterization of their molecular structures, binding energy, electronic properties, and reactivity descriptors. Geometry optimization and vibrational analysis were performed using density functional theory calculations with a hybrid functional combined with effective core potentials. It is shown that reactivity descriptors combined with reactivity principles like the minimum polarizability and maximum hardness are operative for characterizing and rationalizing the electronic properties of copper clusters.
Journal of Chemical Sciences | 2005
Peter Politzer; Alejandro Toro-Labbé; Soledad Gutiérrez-Oliva; Bárbara Herrera; Pablo Jaque; Monica C. Concha; Jane S. Murray
The concept of the reaction force is presented and discussed in detail. For typical processes with energy barriers, it has a universal form which defines three key points along an intrinsic reaction coordinate: the force minimum, zero and maximum. We suggest that the resulting four zones be interpreted as involving preparation of reactants in the first, transition to products in the second and third, and relaxation in the fourth. This general picture is supported by the distinctive patterns of the variations in relevant electronic properties. Two important points that are brought out by the reaction force are that (a) the traditional activation energy comprises two separate contributions, and (b) the transition state corresponds to a balance between the driving and the retarding forces.
Journal of Physical Chemistry A | 2008
Jan Moens; Pablo Jaque; Frank De Proft; Paul Geerlings
In this article, two new approaches are introduced which describe redox reactions through descriptors defined within the field of conceptual density functional theory (DFT). One approach starts with the grand canonical ensemble DFT from which a formula is derived for the chemical potential of the electrode in terms of intrinsic properties of oxidized and reduced states of the electroactive species. Second, starting from a Born-Haber scheme, the redox potential is solely expressed in terms of the vertical electron affinity and ionization potential of oxidized and reduced species, respectively. A large collection of 44 organic and inorganic systems are studied in different solvents including implicit and explicit solvation models. Both strategies seem well capable of reproducing experimental values of redox potentials.
Journal of Physical Chemistry A | 2009
Pablo Jaque; Alejandro Toro-Labbé; Paul Geerlings; Frank De Proft
The regioselectivity of the [2 + 2] photocycloaddition reaction between triplet pi pi(*) acrolein and substituted olefins in their ground states was studied using the reaction force concept and reactivity indices from conceptual spin-polarized density functional theory. In the first part, the reaction path was determined for the attack of the acrolein alpha- and beta-carbon atoms on the alkenes, yielding biradical intermediates evolving to the head-to-tail (HT) and head-to-head (HH) regioisomers, respectively. The beta pathway was found to be the most favorable path from the thermodynamic and kinetic points of view, indicating that the formation of the HH cycloadduct should be preferred for reactions with both electron-rich and electron-poor alkenes if this first step determines the final regioselectivity. In the second part, the reactivity of the biradical intermediates was characterized through global and local spin-polarized response functions, together with the local hard-soft acid-base principle. The results indicate that the intermediate formed from the electron-rich alkenes evolves preferentially toward the HT regioisomer whereas electron-poor alkenes tend to form the HH isomer, in agreement with experiment and previous theoretical studies.
Molecular Physics | 2003
Pratim K. Chattaraj; Soledad Gutiérrez-Oliva; Pablo Jaque; Alejandro Toro-Labbé
Ab initio SCF and DFT(B3LYP) calculations are performed with 6–311G** basis sets for obtaining insights into molecular internal rotations in HXNX (X = O,S), different vibrational modes in water and double proton transfer reaction in (HONO)2. While chemical reactivity is analyzed in terms of the profile of the global reactivity parameters, such as energy, chemical potential, hardness, polarizability, molecular valency and electrophilicity indices, the site selectivity is understood through the variations in local descriptors, such as the Fukui function and atomic valency. Principles of maximum hardness and molecular valency and the minimum polarizability principle are found to be valid in almost all cases. Rotational isomerization reactions can be better characterized by making use of the maximum hardness principle along with Hammonds postulate. Extremum points in electrophilicity during internal rotations, vibrations and chemical reaction can be located from those of chemical potential and hardness. The Fukui function and atomic valency show inverse behaviour in most cases.
Physical Chemistry Chemical Physics | 2014
Diana Yepes; Jane S. Murray; Patricia Pérez; Luis R. Domingo; Peter Politzer; Pablo Jaque
We have computationally compared three Diels-Alder cycloadditions involving cyclopentadiene and substituted ethylenes; one of the reactions is synchronous, while the others are slightly or highly asynchronous. Synchronicity and weak asynchronicity are characterized by the reaction force constant κ(ξ) having just a single minimum in the transition region along the intrinsic reaction coordinate ξ, while for high asynchronicity κ(ξ) has a negative maximum with minima on both sides. The electron localization function (ELF) shows that the features of κ(ξ) can be directly related to the formation of the new C-C bonds between the diene and the dienophile. There is thus a striking complementarity between κ(ξ) and ELF; κ(ξ) identifies the key points along ξ and ELF describes what is happening at those points.
Journal of Physical Chemistry B | 2014
Diana Yepes; Robert Seidel; Bernd Winter; Jochen Blumberger; Pablo Jaque
Photoelectron spectroscopy measurements and density functional calculations are combined to determine the lowest electron binding energies of first-row transition-metal aqua ions, titanium through copper, with 3d(1) through 3d(9) electronic configurations, in their most common oxidation states. Vertical ionization energies are found to oscillate considerably between 6.76 and 9.65 eV for the dications and between 7.05 and 10.28 eV for the respective trivalent cations. The metal cations are modeled as [M(H2O)n](q+) clusters (q = 2, 3, and 4; n = 6 and 18) surrounded by continuum solvent. The performance of 10 exchange-correlation functionals, two GGAs, three MGGAs, two HGGAs and three HMGGAs, combined with the MDF10(ECP)/6-31+G(d,p) basis set is assessed for 11 M-O bond distances, 10 vertical ionization energies, 6 adiabatic ionization energies, and the associated reorganization free energies. We find that for divalent cations the HGGA and HMGGA functionals in combination with the 18 water model show the best agreement with experimental vertical ionization energies and geometries; for trivalent ions, the MGGA functionals perform best. The corresponding reorganization free energies (λo) of the oxidized ions are significantly underestimated with all DFT functionals and cluster models. This indicates that the structural reorganization of the solvation shell upon ionization is not adequately accounted for by the simple solvation models used, emphasizing the importance of extended sampling of thermally accessible solvation structures for an accurate computation of this quantity. The photoelectron spectroscopy measurements reported herein provide a comprehensive set of transition-metal redox energetic quantities for future electronic structure benchmarks.
Journal of Organic Chemistry | 2010
Freija De Vleeschouwer; Pablo Jaque; Paul Geerlings; Alejandro Toro-Labbé; Frank De Proft
Radical additions to substituted alkenes are among the most important reactions in radical chemistry. Nonetheless, there is still some controversy in the literature about the factors that affect the rate and regioselectivity in these addition reactions. In this paper, the orientation of (nucleophilic) radical additions to electron-rich, -neutral, and -poor monosubstituted substrates (11 reactions in total) is investigated through the use of chemical concepts and reactivity descriptors. The regioselectivity of the addition of nucleophilic radicals on electron-rich and -neutral alkenes is thermodynamically controlled. An excellent correlation of 94% is found between the differences in activation barriers and in product stabilities (unsubstituted versus substituted site attack). Polar effects at the initial stage of the reaction play a significant role when electron-poor substrates are considered, lowering the extent of regioselectivity toward the unsubstituted sites, as predicted from the stability differences. This is nicely confirmed through an analysis for each of the 11 reactions using the spin-polarized dual descriptor, matching electrophilic and nucleophilic regions.
ChemPhysChem | 2009
Jan Moens; Pablo Jaque; Frank De Proft; Paul Geerlings
The spectrochemical and nephelauxetic series are analyzed within the context of spin-polarized conceptual DFT. For a series of different [RuL(6)](x) complexes, the local spin-philicity omega(S,Metal)+ condensed on the metal ion shows a remarkable analogy with some semi-empirical scales of the spectrochemical series. The local f(SS,Metal)+ Fukui function in turn can be linked to the nephelauxetic effect. Herein, we present a non-empirical, unified approach for a quantitative discussion of both series.
Journal of Inorganic Biochemistry | 2017
Alan R. Cabrera; Christian Espinosa-Bustos; Mario Faúndez; Jaime Meléndez; Pablo Jaque; Constantin G. Daniliuc; Adam Aguirre; Rene S. Rojas; Cristian O. Salas
Four new neutral N,N imidoyl-indazole ligands (L1, L3, L6, L7) and six new Pt(II)-based complexes (C1-5 and C7) were synthesized and characterized by spectroscopic and spectrometric techniques. Additionally, compounds L6, L7, C3, C5 and C7 were analyzed using X-ray diffraction. An evaluation of cytotoxicity and cell death in vitro for both ligands and complexes was performed by colorimetric assay and flow cytometry, in four cancer cell lines and VERO cells as the control, respectively. Cytotoxicity and selectivity demonstrated by each compound were dependent on the cancer cell line assayed. IC50 values of complexes C1-5 and C7 were lower than those exhibited for the reference drug cisplatin, and selectivity of these complexes was in general terms greater than cisplatin on three cancer cell lines studied. In HL60 cells, complexes C1 and C5 exhibited the lowest values of IC50 and were almost five times more selective than cisplatin. Flow cytometry results suggest that each complex predominantly induced necrosis, and its variant necroptosis, instead of apoptosis in all cancer cell lines studied. DNA binding assays, using agarose gel electrophoresis and UV-visible spectrophotometry studies, displayed a strong interaction only between C4 and DNA. In fact, theoretical calculations showed that C4-DNA binding complex was the most thermodynamic favorable interaction among the complexes in study. Overall, induction of cell death by dependent and independent-DNA-metal compound interactions were possible using imidoyl-indazole Pt(II) complexes as anticancer agents.