Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pablo Jarillo-Herrero is active.

Publication


Featured researches published by Pablo Jarillo-Herrero.


Nature Materials | 2011

Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride

Jiamin Xue; Javier Sanchez-Yamagishi; Daniel S. Bulmash; Philippe Jacquod; Aparna Deshpande; Kenji Watanabe; Takashi Taniguchi; Pablo Jarillo-Herrero; Brian J. LeRoy

Graphene has demonstrated great promise for future electronics technology as well as fundamental physics applications because of its linear energy-momentum dispersion relations which cross at the Dirac point. However, accessing the physics of the low-density region at the Dirac point has been difficult because of disorder that leaves the graphene with local microscopic electron and hole puddles. Efforts have been made to reduce the disorder by suspending graphene, leading to fabrication challenges and delicate devices which make local spectroscopic measurements difficult. Recently, it has been shown that placing graphene on hexagonal boron nitride (hBN) yields improved device performance. Here we use scanning tunnelling microscopy to show that graphene conforms to hBN, as evidenced by the presence of Moiré patterns. However, contrary to predictions, this conformation does not lead to a sizeable band gap because of the misalignment of the lattices. Moreover, local spectroscopy measurements demonstrate that the electron-hole charge fluctuations are reduced by two orders of magnitude as compared with those on silicon oxide. This leads to charge fluctuations that are as small as in suspended graphene, opening up Dirac point physics to more diverse experiments.Graphene has demonstrated great promise for future electronics technology as well as fundamental physics applications because of its linear energy-momentum dispersion relations which cross at the Dirac point[1, 2]. However, accessing the physics of the low density region at the Dirac point has been difficult because of the presence of disorder which leaves the graphene with local microscopic electron and hole puddles[3–5], resulting in a finite density of carriers even at the charge neutrality point. Efforts have been made to reduce the disorder by suspending graphene, leading to fabrication challenges and delicate devices which make local spectroscopic measurements difficult[6, 7]. Recently, it has been shown that placing graphene on hexagonal boron nitride (hBN) yields improved device performance[8]. In this letter, we use scanning tunneling microscopy to show that graphene conforms to hBN, as evidenced by the presence of Moiré patterns in the topographic images. However, contrary to recent predictions[9, 10], this conformation does not lead to a sizable band gap due to the misalignment of the lattices. Moreover, local spectroscopy measurements demonstrate that the electron-hole charge fluctuations are reduced by two orders of magnitude as compared to those on silicon oxide. This leads to charge fluctuations which are as small as in suspended graphene[6], opening up Dirac point physics to more diverse experiments than are possible on freestanding devices. ∗Electronic address: [email protected]


Nature | 2007

Bipolar supercurrent in graphene

Hubert B. Heersche; Pablo Jarillo-Herrero; Jeroen B. Oostinga; L. M. K. Vandersypen; Alberto F. Morpurgo

Graphene—a recently discovered form of graphite only one atomic layer thick—constitutes a new model system in condensed matter physics, because it is the first material in which charge carriers behave as massless chiral relativistic particles. The anomalous quantization of the Hall conductance, which is now understood theoretically, is one of the experimental signatures of the peculiar transport properties of relativistic electrons in graphene. Other unusual phenomena, like the finite conductivity of order 4e2/h (where e is the electron charge and h is Planck’s constant) at the charge neutrality (or Dirac) point, have come as a surprise and remain to be explained. Here we experimentally study the Josephson effect in mesoscopic junctions consisting of a graphene layer contacted by two closely spaced superconducting electrodes. The charge density in the graphene layer can be controlled by means of a gate electrode. We observe a supercurrent that, depending on the gate voltage, is carried by either electrons in the conduction band or by holes in the valence band. More importantly, we find that not only the normal state conductance of graphene is finite, but also a finite supercurrent can flow at zero charge density. Our observations shed light on the special role of time reversal symmetry in graphene, and demonstrate phase coherent electronic transport at the Dirac point.


Nature Nanotechnology | 2014

Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide

Britton W. H. Baugher; Hugh Churchill; Yafang Yang; Pablo Jarillo-Herrero

The p-n junction is the functional element of many electronic and optoelectronic devices, including diodes, bipolar transistors, photodetectors, light-emitting diodes and solar cells. In conventional p-n junctions, the adjacent p- and n-type regions of a semiconductor are formed by chemical doping. Ambipolar semiconductors, such as carbon nanotubes, nanowires and organic molecules, allow for p-n junctions to be configured and modified by electrostatic gating. This electrical control enables a single device to have multiple functionalities. Here, we report ambipolar monolayer WSe2 devices in which two local gates are used to define a p-n junction within the WSe2 sheet. With these electrically tunable p-n junctions, we demonstrate both p-n and n-p diodes with ideality factors better than 2. Under optical excitation, the diodes demonstrate a photodetection responsivity of 210 mA W(-1) and photovoltaic power generation with a peak external quantum efficiency of 0.2%, promising values for a nearly transparent monolayer material in a lateral device geometry. Finally, we demonstrate a light-emitting diode based on monolayer WSe2. These devices provide a building block for ultrathin, flexible and nearly transparent optoelectronic and electronic applications based on ambipolar dichalcogenide materials.


Science | 2011

Hot carrier-assisted intrinsic photoresponse in graphene.

Nathaniel Gabor; Justin C. W. Song; Qiong Ma; Nityan Nair; Thiti Taychatanapat; Kenji Watanabe; Takashi Taniguchi; L. S. Levitov; Pablo Jarillo-Herrero

Photoexcited electrons in graphene remain thermally excited because they cannot transfer this energy to lattice vibrations. We report on the intrinsic optoelectronic response of high-quality dual-gated monolayer and bilayer graphene p-n junction devices. Local laser excitation (of wavelength 850 nanometers) at the p-n interface leads to striking six-fold photovoltage patterns as a function of bottom- and top-gate voltages. These patterns, together with the measured spatial and density dependence of the photoresponse, provide strong evidence that nonlocal hot carrier transport, rather than the photovoltaic effect, dominates the intrinsic photoresponse in graphene. This regime, which features a long-lived and spatially distributed hot carrier population, may offer a path to hot carrier–assisted thermoelectric technologies for efficient solar energy harvesting.


Science | 2013

Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals Heterostructure

Benjamin Hunt; Javier Sanchez-Yamagishi; A. F. Young; Matthew Yankowitz; Brian J. LeRoy; Kenji Watanabe; Takashi Taniguchi; Pilkyung Moon; Mikito Koshino; Pablo Jarillo-Herrero; R. C. Ashoori

Graphene, Gapped and Butterflied The remarkable transport properties of graphene, such as the high electron mobility, make it a promising material for electronics. However, unlike semiconductors such as silicon, graphenes electronic structure lacks a band gap, and a transistor made out of graphene would not have an “off” state. Hunt et al. (p. 1427, published online 16 May; see the Perspective by Fuhrer) modulated the electronic properties of graphene by building a heterostructure consisting of a graphene flake resting on hexagonal boron nitride (hBN), which has the same honeycomb structure as graphene, but consists of alternating boron and nitrogen atoms instead of carbons. The natural mismatch between the graphene and hBN lattices led to a moire pattern with a large wavelength, causing the opening of a band gap, the formation of an elusive fractional quantum Hall state, and, at high magnetic fields, a fractal phenomenon in the electronic structure called the Hofstadter butterfly. A band gap is observed in a monolayer graphene–hexagonal boron nitride heterostructure. [Also see Perspective by Fuhrer] van der Waals heterostructures constitute a new class of artificial materials formed by stacking atomically thin planar crystals. We demonstrated band structure engineering in a van der Waals heterostructure composed of a monolayer graphene flake coupled to a rotationally aligned hexagonal boron nitride substrate. The spatially varying interlayer atomic registry results in both a local breaking of the carbon sublattice symmetry and a long-range moiré superlattice potential in the graphene. In our samples, this interplay between short- and long-wavelength effects resulted in a band structure described by isolated superlattice minibands and an unexpectedly large band gap at charge neutrality. This picture is confirmed by our observation of fractional quantum Hall states at ±53 filling and features associated with the Hofstadter butterfly at ultrahigh magnetic fields.


Nature Physics | 2012

Emergence of superlattice Dirac points in graphene on hexagonal boron nitride

Matthew Yankowitz; Jiamin Xue; Daniel Cormode; Javier Sanchez-Yamagishi; Kenji Watanabe; Takashi Taniguchi; Pablo Jarillo-Herrero; Philippe Jacquod; Brian J. LeRoy

It is well known that graphene deposited on hexagonal boron nitride produces moire patterns in scanning tunnelling microscopy images. The interaction that produces this pattern also produces a commensurate periodic potential that generates a set of Dirac points that are different from those of the graphene lattice itself.


Nano Letters | 2009

Anisotropic Etching and Nanoribbon Formation in Single-Layer Graphene

Leonardo Campos; Vitor Riseti Manfrinato; Javier Sanchez-Yamagishi; Jing Kong; Pablo Jarillo-Herrero

We demonstrate anisotropic etching of single-layer graphene by thermally activated nickel nanoparticles. Using this technique, we obtain sub-10-nm nanoribbons and other graphene nanostructures with edges aligned along a single crystallographic direction. We observe a new catalytic channeling behavior, whereby etched cuts do not intersect, resulting in continuously connected geometries. Raman spectroscopy and electronic measurements show that the quality of the graphene is resilient under the etching conditions, indicating that this method may serve as a powerful technique to produce graphene nanocircuits with well-defined crystallographic edges.


Nano Letters | 2013

Intrinsic Electronic Transport Properties of High-Quality Monolayer and Bilayer MoS2

Britton W. H. Baugher; Hugh Churchill; Yafang Yang; Pablo Jarillo-Herrero

We report electronic transport measurements of devices based on monolayers and bilayers of the transition-metal dichalcogenide MoS2. Through a combination of in situ vacuum annealing and electrostatic gating we obtained ohmic contact to the MoS2 down to 4 K at high carrier densities. At lower carrier densities, low-temperature four probe transport measurements show a metal-insulator transition in both monolayer and bilayer samples. In the metallic regime, the high-temperature behavior of the mobility showed strong temperature dependence consistent with phonon-dominated transport. At low temperature, intrinsic field-effect mobilities approaching 1000 cm(2)/(V·s) were observed for both monolayer and bilayer devices. Mobilities extracted from Hall effect measurements were several times lower and showed a strong dependence on density, likely caused by screening of charged impurity scattering at higher densities.


Nature Chemistry | 2012

Understanding and controlling the substrate effect on graphene electron-transfer chemistry via reactivity imprint lithography

Qing Hua Wang; Zhong Jin; Ki Kang Kim; Andrew J. Hilmer; Geraldine L C Paulus; Chih-Jen Shih; Moon Ho Ham; Javier Sanchez-Yamagishi; Kenji Watanabe; Takashi Taniguchi; Jing Kong; Pablo Jarillo-Herrero; Michael S. Strano

Graphene has exceptional electronic, optical, mechanical and thermal properties, which provide it with great potential for use in electronic, optoelectronic and sensing applications. The chemical functionalization of graphene has been investigated with a view to controlling its electronic properties and interactions with other materials. Covalent modification of graphene by organic diazonium salts has been used to achieve these goals, but because graphene comprises only a single atomic layer, it is strongly influenced by the underlying substrate. Here, we show a stark difference in the rate of electron-transfer reactions with organic diazonium salts for monolayer graphene supported on a variety of substrates. Reactions proceed rapidly for graphene supported on SiO(2) and Al(2)O(3) (sapphire), but negligibly on alkyl-terminated and hexagonal boron nitride (hBN) surfaces, as shown by Raman spectroscopy. We also develop a model of reactivity based on substrate-induced electron-hole puddles in graphene, and achieve spatial patterning of chemical reactions in graphene by patterning the substrate.The chemical functionalization of graphene enables control over electronic properties and sensor recognition sites. However, its study is confounded by an unusually strong influence of the underlying substrate. In this paper, we show a stark difference in the rate of electron transfer chemistry with aryl diazonium salts on monolayer graphene supported on a broad range of substrates. Reactions proceed rapidly when graphene is on SiO_2 and Al_2O_3 (sapphire), but negligibly on alkyl-terminated and hexagonal boron nitride (hBN) surfaces. The effect is contrary to expectations based on doping levels and can instead be described using a reactivity model accounting for substrate-induced electron-hole puddles in graphene. Raman spectroscopic mapping is used to characterize the effect of the substrates on graphene. Reactivity imprint lithography (RIL) is demonstrated as a technique for spatially patterning chemical groups on graphene by patterning the underlying substrate, and is applied to the covalent tethering of proteins on graphene.


Science | 2014

Tunable Phonon Polaritons in Atomically Thin van der Waals Crystals of Boron Nitride

Siyuan Dai; Zhe Fei; Qiong Ma; A. S. Rodin; M. Wagner; Alexander S. McLeod; M. K. Liu; Will Gannett; William Regan; Kenji Watanabe; Takashi Taniguchi; Mark H. Thiemens; G. Dominguez; A. H. Castro Neto; Alex Zettl; Fritz Keilmann; Pablo Jarillo-Herrero; Michael M. Fogler; D. N. Basov

Nanoimaged Polaritons Engineered heterostructures consisting of thin, weakly bound layers can exhibit many attractive electronic properties. Dai et al. (p. 1125) used infrared nanoimaging on the surface of hexagonal boron nitride crystals to detect phonon polaritons, collective modes that originate in the coupling of photons to optical phonons. The findings reveal the dependence of the polariton wavelength and dispersion on the thickness of the material down to just a few atomic layers. Infrared nanoimaging is used to detect a type of surface collective mode in a representative van der Waals crystal. van der Waals heterostructures assembled from atomically thin crystalline layers of diverse two-dimensional solids are emerging as a new paradigm in the physics of materials. We used infrared nanoimaging to study the properties of surface phonon polaritons in a representative van der Waals crystal, hexagonal boron nitride. We launched, detected, and imaged the polaritonic waves in real space and altered their wavelength by varying the number of crystal layers in our specimens. The measured dispersion of polaritonic waves was shown to be governed by the crystal thickness according to a scaling law that persists down to a few atomic layers. Our results are likely to hold true in other polar van der Waals crystals and may lead to new functionalities.

Collaboration


Dive into the Pablo Jarillo-Herrero's collaboration.

Top Co-Authors

Avatar

Kenji Watanabe

National Institute for Materials Science

View shared research outputs
Top Co-Authors

Avatar

Takashi Taniguchi

National Institute for Materials Science

View shared research outputs
Top Co-Authors

Avatar

Qiong Ma

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Javier Sanchez-Yamagishi

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Valla Fatemi

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Nuh Gedik

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jing Kong

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Yafang Yang

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Hadar Steinberg

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge