Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pablo Penaloza-MacMaster is active.

Publication


Featured researches published by Pablo Penaloza-MacMaster.


Nature | 2014

Rapid seeding of the viral reservoir prior to SIV viraemia in rhesus monkeys

James B. Whitney; Alison L. Hill; Srisowmya Sanisetty; Pablo Penaloza-MacMaster; Jinyan Liu; Mayuri Shetty; Lily Parenteau; Crystal Cabral; Jennifer Shields; Stephen Blackmore; Jeffrey Y. Smith; Amanda L. Brinkman; Lauren Peter; Sheeba Mathew; Kaitlin M. Smith; Erica N. Borducchi; Daniel I. S. Rosenbloom; Mark G. Lewis; Jillian Hattersley; Bei Li; Joseph Hesselgesser; Romas Geleziunas; Merlin L. Robb; Jerome H. Kim; Nelson L. Michael; Dan H. Barouch

The viral reservoir represents a critical challenge for human immunodeficiency virus type 1 (HIV-1) eradication strategies. However, it remains unclear when and where the viral reservoir is seeded during acute infection and the extent to which it is susceptible to early antiretroviral therapy (ART). Here we show that the viral reservoir is seeded rapidly after mucosal simian immunodeficiency virus (SIV) infection of rhesus monkeys and before systemic viraemia. We initiated suppressive ART in groups of monkeys on days 3, 7, 10 and 14 after intrarectal SIVMAC251 infection. Treatment with ART on day 3 blocked the emergence of viral RNA and proviral DNA in peripheral blood and also substantially reduced levels of proviral DNA in lymph nodes and gastrointestinal mucosa as compared with treatment at later time points. In addition, treatment on day 3 abrogated the induction of SIV-specific humoral and cellular immune responses. Nevertheless, after discontinuation of ART following 24 weeks of fully suppressive therapy, virus rebounded in all animals, although the monkeys that were treated on day 3 exhibited a delayed viral rebound as compared with those treated on days 7, 10 and 14. The time to viral rebound correlated with total viraemia during acute infection and with proviral DNA at the time of ART discontinuation. These data demonstrate that the viral reservoir is seeded rapidly after intrarectal SIV infection of rhesus monkeys, during the ‘eclipse’ phase, and before detectable viraemia. This strikingly early seeding of the refractory viral reservoir raises important new challenges for HIV-1 eradication strategies.


Journal of Clinical Investigation | 2013

PD-L1 blockade synergizes with IL-2 therapy in reinvigorating exhausted T cells

Erin E. West; Hyun Tak Jin; Ata Ur Rasheed; Pablo Penaloza-MacMaster; Sang Jun Ha; Wendy G. Tan; Ben Youngblood; Gordon J. Freeman; Kendall A. Smith; Rafi Ahmed

The inhibitory receptor programmed cell death 1 (PD-1) plays a major role in functional exhaustion of T cells during chronic infections and cancer, and recent clinical data suggest that blockade of the PD-1 pathway is an effective immunotherapy in treating certain cancers. Thus, it is important to define combinatorial approaches that increase the efficacy of PD-1 blockade. To address this issue, we examined the effect of IL-2 and PD-1 ligand 1 (PD-L1) blockade in the mouse model of chronic lymphocytic choriomeningitis virus (LCMV) infection. We found that low-dose IL-2 administration alone enhanced CD8+ T cell responses in chronically infected mice. IL-2 treatment also decreased inhibitory receptor levels on virus-specific CD8+ T cells and increased expression of CD127 and CD44, resulting in a phenotype resembling that of memory T cells. Surprisingly, IL-2 therapy had only a minimal effect on reducing viral load. However, combining IL-2 treatment with blockade of the PD-1 inhibitory pathway had striking synergistic effects in enhancing virus-specific CD8+ T cell responses and decreasing viral load. Interestingly, this reduction in viral load occurred despite increased numbers of Tregs. These results suggest that combined IL-2 therapy and PD-L1 blockade merits consideration as a regimen for treating human chronic infections and cancer.


Journal of Experimental Medicine | 2014

Interplay between regulatory T cells and PD-1 in modulating T cell exhaustion and viral control during chronic LCMV infection.

Pablo Penaloza-MacMaster; Alice O. Kamphorst; Andreas Wieland; Koichi Araki; Smita S. Iyer; Erin E. West; Leigh O’Mara; Shu Yang; Bogumila T. Konieczny; Arlene H. Sharpe; Gordon J. Freeman; Alexander Y. Rudensky; Rafi Ahmed

T reg cells effectively maintain CD8 T cell exhaustion during chronic LCMV infection, but blockade of PD-1 is critical for elimination of infected cells.


Journal of Immunology | 2011

4-1BB Signaling Synergizes with Programmed Death Ligand 1 Blockade To Augment CD8 T Cell Responses during Chronic Viral Infection

Vaiva Vezys; Pablo Penaloza-MacMaster; Daniel L. Barber; Sang Jun Ha; Bogumila T. Konieczny; Gordon J. Freeman; Robert S. Mittler; Rafi Ahmed

Previous studies have identified the inhibitory role that the programmed death 1 (PD-1) pathway plays during chronic infection. Blockade of this pathway results in rescue of viral-specific CD8 T cells, as well as reduction of viral loads in mice chronically infected with lymphocytic choriomeningitis virus (LCMV). We tested the effect of combining PD ligand 1 (PD-L1) blockade with an agonistic regimen that induces 4-1BB costimulation during chronic LCMV infection. There is a boosting effect in the rescue of LCMV-specific CD8 T cell responses after dual treatment with PD-L1 blockade and 4-1BB agonistic Abs when the amount and timing of 4-1BB costimulation are carefully controlled. When PD-L1–blocking Abs are given together with a single low dose of anti–4-1BB agonistic Abs, there is an enhanced and stable expansion of viral-specific CD8 T cells. Conversely, when blocking Abs to PD-L1 are given with a repetitive high dose of anti–4-1BB, there is an initial synergistic expansion of viral-specific CD8 T cells by day 7, followed by dramatic apoptosis by day 14. Viral control paralleled CD8 T cell kinetics after dual treatment. By day 7 posttreatment, viral titers were lower in both of the combined regimens (compared with PD-L1 blockade alone). However, whereas the high dose of anti–4-1BB plus PD-L1 blockade resulted in rebound of viral titers to original levels, the low dose of anti–4-1BB plus PD-L1 blockade resulted in a stable reduction of viral loads. These findings demonstrate the importance of carefully manipulating the balance between activating and inhibitory signals to enhance T cell responses during chronic infection.


Journal of Virology | 2013

Alternative serotype adenovirus vaccine vectors elicit memory T cells with enhanced anamnestic capacity compared to Ad5 vectors

Pablo Penaloza-MacMaster; Nicholas M. Provine; Joshua Ra; Erica N. Borducchi; Anna McNally; Nathaniel L. Simmons; Mark J. Iampietro; Dan H. Barouch

ABSTRACT The failure of the adenovirus serotype 5 (Ad5) vector-based human immunodeficiency virus type 1 (HIV-1) vaccine in the STEP study has led to the development of adenovirus vectors derived from alternative serotypes, such as Ad26, Ad35, and Ad48. We have recently demonstrated that vaccines using alternative-serotype Ad vectors confer partial protection against stringent simian immunodeficiency virus (SIV) challenges in rhesus monkeys. However, phenotypic differences between the T cell responses elicited by Ad5 and those of alternative-serotype Ad vectors remain unexplored. Here, we report the magnitude, phenotype, functionality, and recall capacity of memory T cell responses elicited in mice by Ad5, Ad26, Ad35, and Ad48 vectors expressing lymphocytic choriomeningitis virus (LCMV) glycoprotein (GP). Our data demonstrate that memory T cells elicited by Ad5 vectors were high in magnitude but exhibited functional exhaustion and decreased anamnestic potential following secondary antigen challenge compared to Ad26, Ad35, and Ad48 vectors. These data suggest that vaccination with alternative-serotype Ad vectors offers substantial immunological advantages over Ad5 vectors, in addition to circumventing high baseline Ad5-specific neutralizing antibody titers.


Journal of Virology | 2013

Comparative Analysis of Simian Immunodeficiency Virus Gag-Specific Effector and Memory CD8+ T Cells Induced by Different Adenovirus Vectors

Wendy G. Tan; Hyun Tak Jin; Erin E. West; Pablo Penaloza-MacMaster; Andreas Wieland; Michael J. Zilliox; M. Juliana McElrath; Dan H. Barouch; Rafi Ahmed

ABSTRACT Adenovirus (Ad) vectors are widely used as experimental vaccines against several infectious diseases, but the magnitude, phenotype, and functionality of CD8+ T cell responses induced by different adenovirus serotypes have not been compared. To address this question, we have analyzed simian immunodeficiency virus Gag-specific CD8+ T cell responses in mice following vaccination with Ad5, Ad26, and Ad35. Our results show that although Ad5 is more immunogenic than Ad26 and Ad35, the phenotype, function, and recall potential of memory CD8+ T cells elicited by these vectors are substantially different. Ad26 and Ad35 vectors generated CD8+ T cells that display the phenotype and function of long-lived memory T cells, whereas Ad5 vector-elicited CD8+ T cells are of a more terminally differentiated phenotype. In addition, hepatic memory CD8+ T cells elicited by Ad26 and Ad35 mounted more robust recall proliferation following secondary challenge than those induced by Ad5. Furthermore, the boosting potential was higher following priming with alternative-serotype Ad vectors than with Ad5 vectors in heterologous prime-boost regimens. Anamnestic CD8+ T cell responses were further enhanced when the duration between priming and boosting was extended from 30 to 60 days. Our results demonstrate that heterologous prime-boost vaccine regimens with alternative-serotype Ad vectors elicited more functional memory CD8+ T cells than any of the regimens containing Ad5. In summary, these results suggest that alternative-serotype Ad vectors will prove useful as candidates for vaccine development against human immunodeficiency virus type 1 and other pathogens and also emphasize the importance of a longer rest period between prime and boost for generating optimal CD8+ T cell immunity.


Journal of Virology | 2011

Opposing Effects of CD70 Costimulation during Acute and Chronic Lymphocytic Choriomeningitis Virus Infection of Mice

Pablo Penaloza-MacMaster; Ata Ur Rasheed; Smita S. Iyer; Hideo Yagita; Bruce R. Blazar; Rafi Ahmed

ABSTRACT T cell costimulation is important for T cell activation. The CD27/CD70 pathway contributes to effector and memory T cell development and is involved in T cell and B cell activation. CD27/CD70 is known for having opposing roles during different models of antigenic challenges. During primary T cell responses to influenza virus infection or during tumor challenges, CD27/CD70 costimulation has a positive role on T cell responses. However, during some chronic infections, constitutive triggering of this signaling pathway has a negative role on T cell responses. It is currently unclear what specific characteristic of an antigen determines the outcome of CD27/CD70 costimulation. We investigated the effect of a transient CD70 blockade during an acute or a chronic lymphocytic choriomeningitis virus (LCMV) infection in mice. Blockade of this pathway during acute LCMV infection (Armstrong strain) resulted in delayed T cell responses and decreased CD127 (interleukin-7 receptor α [IL-7Rα] chain) conversion. Upregulation of CD127 is an important event in T cell differentiation that heralds the passage of an effector T cell to a long-lived memory T cell. In contrast to the reduced CD8 T cell responses after CD70 blockade during acute infection, CD70 blockade during chronic LCMV infection resulted in increased CD8 T cell responses. Our data show the dual roles of this costimulatory pathway in acute versus persistent antigen challenge. Our findings suggest that antigen persistence may determine the effect of CD27/CD70 signaling on CD8 T cell responses. Tailored triggering or blockade of this costimulatory pathway may be important in vaccination regimens against acute or chronic pathogens.


Science | 2015

Vaccine-elicited CD4 T cells induce immunopathology after chronic LCMV infection.

Pablo Penaloza-MacMaster; Daniel L. Barber; E. John Wherry; Nicholas M. Provine; Jeffrey E. Teigler; Lily Parenteau; Stephen Blackmore; Erica N. Borducchi; Rafael A. Larocca; Kathleen Yates; Hao Shen; W. Nicholas Haining; Rami Sommerstein; Daniel D. Pinschewer; Rafi Ahmed; Dan H. Barouch

For vaccines, CD4+ T cells can spell trouble The ideal vaccine elicits immune memory—either antibodies or memory T cells—to protect the host from subsequent infections. T cell–mediated immunity requires both helper CD4+ T cells and cytotoxic CD8+ T cells to kill virus-infected cells. But what happens when a vaccine only elicits CD4+ memory T cells? Penaloza-MacMaster et al. probed this question by giving mice a vaccine that generated only memory CD4+ T cells against lymphocytic choriomeningitis virus (LCMV). Instead of protecting mice against chronic LCMV, vaccinated mice developed massive inflammation and died. Virus-specific CD8+ T cells or antibodies protected mice from the pathology. These results may have implications for vaccines against chronic viruses such as HIV. Science, this issue p. 278 Severe immunopathology kills virally infected mice that received vaccines targeting only CD4+ T cells. CD4 T cells promote innate and adaptive immune responses, but how vaccine-elicited CD4 T cells contribute to immune protection remains unclear. We evaluated whether induction of virus-specific CD4 T cells by vaccination would protect mice against infection with chronic lymphocytic choriomeningitis virus (LCMV). Immunization with vaccines that selectively induced CD4 T cell responses resulted in catastrophic inflammation and mortality after challenge with a persistent strain of LCMV. Immunopathology required antigen-specific CD4 T cells and was associated with a cytokine storm, generalized inflammation, and multi-organ system failure. Virus-specific CD8 T cells or antibodies abrogated the pathology. These data demonstrate that vaccine-elicited CD4 T cells in the absence of effective antiviral immune responses can trigger lethal immunopathology.


European Journal of Immunology | 2013

Identification of novel markers for mouse CD4 + T follicular helper cells

Smita S. Iyer; Donald R. Latner; Michael J. Zilliox; Megan McCausland; Rama Akondy; Pablo Penaloza-MacMaster; Jeffrey Scott Hale; Lilin Ye; Ata Ur Rasheed Mohammed; Tomoyuki Yamaguchi; Shimon Sakaguchi; Rama Rao Amara; Rafi Ahmed

CD4+ T follicular helper (TFH) cells are central for generation of long‐term B‐cell immunity. A defining phenotypic attribute of TFH cells is the expression of the chemokine R CXCR5, and TFH cells are typically identified by co‐expression of CXCR5 together with other markers such as PD‐1, ICOS, and Bcl‐6. Herein, we report high‐level expression of the nutrient transporter folate R 4 (FR4) on TFH cells in acute viral infection. Distinct from the expression profile of conventional TFH markers, FR4 was highly expressed by naive CD4+ T cells, was downregulated after activation and subsequently re‐expressed on TFH cells. Furthermore, FR4 expression was maintained, albeit at lower levels, on memory TFH cells. Comparative gene expression profiling of FR4hi versus FR4lo Ag‐specific CD4+ effector T cells revealed a molecular signature consistent with TFH and TH1 subsets, respectively. Interestingly, genes involved in the purine metabolic pathway, including the ecto‐enzyme CD73, were enriched in TFH cells compared with TH1 cells, and phenotypic analysis confirmed expression of CD73 on TFH cells. As there is now considerable interest in developing vaccines that would induce optimal TFH cell responses, the identification of two novel cell surface markers should be useful in characterization and identification of TFH cells following vaccination and infection.


Vaccine | 2011

Different patterns of expansion, contraction and memory differentiation of HIV-1 Gag-specific CD8 T cells elicited by adenovirus type 5 and modified vaccinia Ankara vaccines

Vinod B. Pillai; Sunil Kannanganat; Pablo Penaloza-MacMaster; Lakshmi Chennareddi; Harriet L. Robinson; Jerry L. Blackwell; Rama Rao Amara

The magnitude and functional quality of antiviral CD8 T cell responses are critical for the efficacy of T cell based vaccines. Here, we investigate the influence of two popular viral vectors, adenovirus type 5 (Ad5) and modified vaccinia Ankara (MVA), on expansion, contraction and memory differentiation of HIV-1 Gag insert-specific CD8 T cell responses following immunization and show different patterns for the two recombinant viral vectors. The Ad5 vector primed 6-fold higher levels of insert-specific CD8 effector T cells than the MVA vector. The Ad5-primed effector cells also underwent less contraction (<2-fold) than the MVA-primed cells (>5-fold). The Ad5-primed memory cells were predominantly CD62L negative (effector memory) whereas the MVA-primed memory cells were predominantly CD62L positive (central memory). Consistent with their memory phenotype, MVA-primed CD8 T cells underwent higher fold expansion than Ad5-primed CD8 T cells following a homologous or heterologous boost. Impressively, the Ad5 boost changed the quality of MVA-primed memory response such that they undergo less contraction with effector memory phenotype. However, the MVA boost did not influence the contraction and memory phenotype of Ad5-primed response. In conclusion, our results demonstrate that vaccine vector strongly influences the expansion, contraction and the functional quality of insert-specific CD8 T cell responses and have implications for vaccine development against infectious diseases.

Collaboration


Dive into the Pablo Penaloza-MacMaster's collaboration.

Top Co-Authors

Avatar

Dan H. Barouch

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Nicholas M. Provine

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Erica N. Borducchi

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Rafael A. Larocca

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lily Parenteau

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Alexander Badamchi-Zadeh

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Eryn Blass

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffrey E. Teigler

Beth Israel Deaconess Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge