Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pablo R. Brumovsky is active.

Publication


Featured researches published by Pablo R. Brumovsky.


The Journal of Urology | 2009

Spontaneous Contractions Evoke Afferent Nerve Firing in Mouse Bladders With Detrusor Overactivity

Carly McCarthy; Irina Zabbarova; Pablo R. Brumovsky; James R. Roppolo; G.F. Gebhart; Anthony Kanai

PURPOSE Afferent nerve firing has been linked to spontaneous bladder contractions in a number of lower urinary tract pathologies and it may lead to urgency and incontinence. Using optical mapping, single unit recording and tension measurements we investigated the correlation between afferent nerve firing and spontaneous bladder contractions in spinal cord transected mice. MATERIALS AND METHODS Bladder-nerve preparations (bladder sheets and the associated L6-S2 pelvic nerves) were dissected from normal and spinal cord transected mice showing overactivity on cystometry and opened along the ventral aspect from base to dome. Bladder sheets were mounted horizontally in a temperature regulated chamber to simultaneously record Ca(2+) transients across the mucosal surface, single unit afferent nerve firing and whole bladder tension. RESULTS Single unit afferent fibers were identified by probing their receptive fields. Fibers showed a graded response to von Frey stimulation and a frequency of afferent firing that increased as a function of the degree of stretch. Optical maps of Ca(2+) transients in control bladders demonstrated multiple initiation sites that resulted in high frequency, low amplitude spontaneous contractions. Alternatively in maps of the bladders of spinal cord transected mice Ca(2+) transients arose from 1 or 2 focal sites, resulting in low frequency, high amplitude contractions and concomitant afferent firing. CONCLUSIONS Large amplitude, spontaneous bladder contractions evoke afferent nerve activity, which may contribute to incontinence.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2010

Differential roles of stretch-sensitive pelvic nerve afferents innervating mouse distal colon and rectum

Bin Feng; Pablo R. Brumovsky; G.F. Gebhart

Information about colorectal distension (i.e., colorectal dilation by increased intraluminal pressure) is primarily encoded by stretch-sensitive colorectal afferents in the pelvic nerve (PN). Despite anatomic differences between rectum and distal colon, little is known about the functional roles of colonic vs. rectal afferents in the PN pathway or the quantitative nature of mechanosensory encoding. We utilized an in vitro mouse colorectum-PN preparation to investigate pressure-encoding characteristics of colorectal afferents. The colorectum with PN attached was dissected, opened longitudinally, and pinned flat in a Sylgard-lined chamber. Action potentials of afferent fibers evoked by circumferential stretch (servo-controlled force actuator) were recorded from the PN. Stretch-sensitive fibers were categorized into the following four groups: colonic muscular, colonic muscular/mucosal, rectal muscular, and rectal muscular/mucosal. Seventy-nine stretch-sensitive PN afferents evenly distributed into the above four groups were studied. Rectal muscular afferents had significantly greater stretch-responses than the other three groups. Virtually all rectal afferents (98%) had low thresholds for response and encoded stimulus intensity into the noxious range without obvious saturation. Most colonic afferents (72%) also had low thresholds (<14 mmHg), but a significant proportion (28%) had high thresholds (>18 mmHg) for response. These high-threshold colonic afferents were sensitized to stretch by inflammatory soup; response threshold was significantly reduced (from 23 to 12 mmHg), and response magnitude significantly increased. These results suggest that the encoding of mechanosensory information differs between colonic and rectal stretch-sensitive PN afferents. Rectal afferents have a wide response range to stretch, whereas high-threshold colonic afferents likely contribute to visceral nociception.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2009

Cystitis increases colorectal afferent sensitivity in the mouse.

Pablo R. Brumovsky; Bin Feng; Linjing Xu; Carly McCarthy; G.F. Gebhart

Studies in humans and rodents suggest that colon inflammation promotes urinary bladder hypersensitivity and, conversely, that cystitis contributes to colon hypersensitivity, events referred to as cross-organ sensitization. To investigate a potential peripheral mechanism, we examined whether cystitis alters the sensitivity of pelvic nerve colorectal afferents. Male C57BL/6 mice were treated with cyclophosphamide (CYP) or saline, and the mechanosensitive properties of single afferent fibers innervating the colorectum were studied with an in vitro preparation. In addition, mechanosensitive receptive endings were exposed to an inflammatory soup (IS) to study sensitization. Urinary bladder mechanosensitive afferents were also tested. We found that baseline responses of stretch-sensitive colorectal afferents did not differ between treatment groups. Whereas IS excited a proportion of colorectal afferents CYP treatment did not alter the magnitude of this response. However, the number of stretch-sensitive fibers excited by IS was increased relative to saline-treated mice. Responses to IS were not altered by CYP treatment, but the proportion of IS-responsive fibers was increased relative to saline-treated mice. In bladder, IS application increased responses of muscular afferents to stretch, although no differences were detected between saline- and CYP-treated mice. In contrast, their chemosensitivity to IS was decreased in the CYP-treated group. Histological examination revealed no changes in colorectum and modest edema and infiltration in the urinary bladder of CYP-treated mice. In conclusion, CYP treatment increased mechanical sensitivity of colorectal muscular afferents and increased the proportion of chemosensitive colorectal afferents. These data support a peripheral contribution to cross-organ sensitization of pelvic organs.


Journal of Chemical Neuroanatomy | 2008

Differential galanin upregulation in dorsal root ganglia and spinal cord after graded single ligature nerve constriction of the rat sciatic nerve

María Florencia Coronel; Pablo R. Brumovsky; Tomas Hökfelt; Marcelo J. Villar

Single ligature nerve constriction (SLNC) is a newly developed animal model for the study of neuropathic pain. SLNC of the rat sciatic nerve induces pain-related behaviors, as well as changes in the expression of neuropeptide tyrosine and the Y(1) receptor in lumbar dorsal root ganglia (DRGs) and spinal cord. In the present study, we have analyzed the expression of another neuropeptide, galanin, in lumbar DRGs and spinal cord after different degrees of constriction of the rat sciatic nerve. The nerve was ligated and reduced to 10-30, 40-80 or 90% of its original diameter (light, medium or strong SLNCs). At different times after injury (7, 14, 30, 60 days), lumbar 4 and 5 DRGs and the corresponding levels of the spinal cord were dissected out and processed for galanin-immunohistochemistry. In DRGs, SLNC induced a gradual increase in the number of galanin-immunoreactive (IR) neurons, in direct correlation with the degree of constriction. Thus, after light SLNC, a modest upregulation of galanin was observed, mainly in small-sized neurons. However, following medium or strong SLNCs, there was a more drastic increase in the number of galanin-IR neurons, involving also medium and large-sized cells. The highest numbers of galanin-IR neurons were detected 14 days after injury. In the dorsal horn of the spinal cord, medium and strong SLNCs induced a marked ipsilateral increase in galanin-like immunoreactivity in laminae I-II. These results show that galanin expression in DRGs and spinal cord is differentially regulated by different degrees of nerve constriction and further support its modulatory role on neuropathic pain.


Neuroscience | 2013

Transcript expression of vesicular glutamate transporters in lumbar dorsal root ganglia and the spinal cord of mice - effects of peripheral axotomy or hindpaw inflammation.

Mariana Malet; C.A. Vieytes; Kerstin H. Lundgren; Rebecca P. Seal; E. Tomasella; Kim B. Seroogy; T. Hökfelt; G.F. Gebhart; Pablo R. Brumovsky

Using specific riboprobes, we characterized the expression of vesicular glutamate transporter (VGLUT)₁-VGLUT₃ transcripts in lumbar 4-5 (L4-5) dorsal root ganglions (DRGs) and the thoracolumbar to lumbosacral spinal cord in male BALB/c mice after a 1- or 3-day hindpaw inflammation, or a 7-day sciatic nerve axotomy. Sham animals were also included. In sham and contralateral L4-5 DRGs of injured mice, VGLUT₁-, VGLUT₂- and VGLUT₃ mRNAs were expressed in ∼45%, ∼69% or ∼17% of neuron profiles (NPs), respectively. VGLUT₁ was expressed in large and medium-sized NPs, VGLUT₂ in NPs of all sizes, and VGLUT₃ in small and medium-sized NPs. In the spinal cord, VGLUT₁ was restricted to a number of NPs at thoracolumbar and lumbar segments, in what appears to be the dorsal nucleus of Clarke, and in mid laminae III-IV. In contrast, VGLUT₂ was present in numerous NPs at all analyzed spinal segments, except the lateral aspects of the ventral horns, especially at the lumbar enlargement, where it was virtually absent. VGLUT₃ was detected in a discrete number of NPs in laminae III-IV of the dorsal horn. Axotomy resulted in a moderate decrease in the number of DRG NPs expressing VGLUT₃, whereas VGLUT₁ and VGLUT₂ were unaffected. Likewise, the percentage of NPs expressing VGLUT transcripts remained unaltered after hindpaw inflammation, both in DRGs and the spinal cord. Altogether, these results confirm previous descriptions on VGLUTs expression in adult mice DRGs, with the exception of VGLUT₁, whose protein expression was detected in a lower percentage of mouse DRG NPs. A detailed account on the location of neurons expressing VGLUTs transcripts in the adult mouse spinal cord is also presented. Finally, the lack of change in the number of neurons expressing VGLUT₁ and VGLUT₂ transcripts after axotomy, as compared to data on protein expression, suggests translational rather than transcriptional regulation of VGLUTs after injury.


Neuroscience | 2012

Dorsal root ganglion neurons innervating pelvic organs in the mouse express tyrosine hydroxylase.

Pablo R. Brumovsky; Jun Ho La; Carly J. McCarthy; Tomas Hökfelt; G.F. Gebhart

Previous studies in rat and mouse documented that a subpopulation of dorsal root ganglion (DRG) neurons innervating non-visceral tissues express tyrosine hydroxylase (TH). Here we studied whether or not mouse DRG neurons retrogradely traced with Fast Blue (FB) from colorectum or urinary bladder also express immunohistochemically detectable TH. The lumbar sympathetic chain (LSC) and major pelvic ganglion (MPG) were included in the analysis. Previously characterized antibodies against TH, norepinephrine transporter type 1 (NET-1) and calcitonin gene-related peptide (CGRP) were used. On average, ∼14% of colorectal and ∼17% of urinary bladder DRG neurons expressed TH and spanned virtually all neuronal sizes, although more often in the medium-sized to small ranges. Also, they were more abundant in lumbosacral than thoracolumbar DRGs, and often coexpressed CGRP. We also detected several TH-immunoreactive (IR) colorectal and urinary bladder neurons in the LSC and the MPG, more frequently in the former. No NET-1-IR neurons were detected in DRGs, whereas the majority of FB-labeled, TH-IR neurons in the LSC and MPG coexpressed this marker (as did most other TH-IR neurons not labeled from the target organs). TH-IR nerve fibers were detected in all layers of the colorectum and the urinary bladder, with some also reaching the basal mucosal cells. Most TH-IR fibers in these organs lacked CGRP. Taken together, we show: (1) that a previously undescribed population of colorectal and urinary bladder DRG neurons expresses TH, often CGRP but not NET-1, suggesting the absence of a noradrenergic phenotype; and (2) that TH-IR axons/terminals in the colon or urinary bladder, naturally expected to derive from autonomic sources, could also originate from sensory neurons.


The Journal of Comparative Neurology | 2011

Expression of vesicular glutamate transporters type 1 and 2 in sensory and autonomic neurons innervating the mouse colorectum

Pablo R. Brumovsky; David R. Robinson; Jun Ho La; Kim B. Seroogy; Kerstin H. Lundgren; Kathryn M. Albers; Michael E. Kiyatkin; Rebecca P. Seal; Robert H. Edwards; Masahiko Watanabe; Tomas Hökfelt; G.F. Gebhart

Vesicular glutamate transporters (VGLUTs) have been extensively studied in various neuronal systems, but their expression in visceral sensory and autonomic neurons remains to be analyzed in detail. Here we studied VGLUTs type 1 and 2 (VGLUT1 and VGLUT2, respectively) in neurons innervating the mouse colorectum. Lumbosacral and thoracolumbar dorsal root ganglion (DRG), lumbar sympathetic chain (LSC), and major pelvic ganglion (MPG) neurons innervating the colorectum of BALB/C mice were retrogradely traced with Fast Blue, dissected, and processed for immunohistochemistry. Tissue from additional naïve mice was included. Previously characterized antibodies against VGLUT1, VGLUT2, and calcitonin gene‐related peptide (CGRP) were used. Riboprobe in situ hybridization, using probes against VGLUT1 and VGLUT2, was also performed. Most colorectal DRG neurons expressed VGLUT2 and often colocalized with CGRP. A smaller percentage of neurons expressed VGLUT1. VGLUT2‐immunoreactive (IR) neurons in the MPG were rare. Abundant VGLUT2‐IR nerves were detected in all layers of the colorectum; VGLUT1‐IR nerves were sparse. A subpopulation of myenteric plexus neurons expressed VGLUT2 protein and mRNA, but VGLUT1 mRNA was undetectable. In conclusion, we show 1) that most colorectal DRG neurons express VGLUT2, and to a lesser extent, VGLUT1; 2) abundance of VGLUT2‐IR fibers innervating colorectum; and 3) a subpopulation of myenteric plexus neurons expressing VGLUT2. Altogether, our data suggests a role for VGLUT2 in colorectal glutamatergic neurotransmission, potentially influencing colorectal sensitivity and motility. J. Comp. Neurol. 519:3346–3366, 2011.


Experimental Neurology | 2011

Some lumbar sympathetic neurons develop a glutamatergic phenotype after peripheral axotomy with a note on VGLUT2-positive perineuronal baskets

Pablo R. Brumovsky; Kim B. Seroogy; Kerstin H. Lundgren; Masahiko Watanabe; Tomas Hökfelt; G.F. Gebhart

Glutamate is the main excitatory neurotransmitter in the nervous system, including in primary afferent neurons. However, to date a glutamatergic phenotype of autonomic neurons has not been described. Therefore, we explored the expression of vesicular glutamate transporter (VGLUT) types 1, 2 and 3 in lumbar sympathetic chain (LSC) and major pelvic ganglion (MPG) of naïve BALB/C mice, as well as after pelvic nerve axotomy (PNA), using immunohistochemistry and in situ hybridization. Colocalization with activating transcription factor-3 (ATF-3), tyrosine hydroxylase (TH), vesicular acetylcholine transporter (VAChT) and calcitonin gene-related peptide was also examined. Sham-PNA, sciatic nerve axotomy (SNA) or naïve mice were included. In naïve mice, VGLUT(2)-like immunoreactivity (LI) was only detected in fibers and varicosities in LSC and MPG; no ATF-3-immunoreactive (IR) neurons were visible. In contrast, PNA induced upregulation of VGLUT(2) protein and transcript, as well as of ATF-3-LI in subpopulations of LSC neurons. Interestingly, VGLUT(2)-IR LSC neurons coexpressed ATF-3, and often lacked the noradrenergic marker TH. SNA only increased VGLUT(2) protein and transcript in scattered LSC neurons. Neither PNA nor SNA upregulated VGLUT(2) in MPG neurons. We also found perineuronal baskets immunoreactive either for VGLUT(2) or the acetylcholinergic marker VAChT in non-PNA MPGs, usually around TH-IR neurons. VGLUT(1)-LI was restricted to some varicosities in MPGs, was absent in LSCs, and remained largely unaffected by PNA or SNA. This was confirmed by the lack of expression of VGLUT(1) or VGLUT(3) mRNAs in LSCs, even after PNA or SNA. Taken together, axotomy of visceral and non-visceral nerves results in a glutamatergic phenotype of some LSC neurons. In addition, we show previously non-described MPG perineuronal glutamatergic baskets.


The Journal of Urology | 2013

Expression of vesicular glutamate transporters in sensory and autonomic neurons innervating the mouse bladder.

Pablo R. Brumovsky; Rebecca P. Seal; Kerstin H. Lundgren; Kim B. Seroogy; Masahiko Watanabe; G.F. Gebhart

PURPOSE VGLUTs, which are essential for loading glutamate into synaptic vesicles, are present in various neuronal systems. However, to our knowledge the expression of VGLUTs in neurons innervating the bladder has not yet been analyzed. We studied VGLUT1, VGLUT2 and VGLUT3 in mouse bladder neurons. MATERIALS AND METHODS We analyzed the expression of VGLUT1, VGLUT2 and calcitonin gene-related peptide by immunohistochemistry in the retrograde labeled primary afferent and autonomic neurons of BALB/c mice after injecting fast blue in the bladder wall. To study VGLUT3 we traced the bladder of transgenic mice, in which VGLUT3 is identified by enhanced green fluorescent protein detection. RESULTS Most bladder dorsal root ganglion neurons expressed VGLUT2. A smaller percentage of neurons also expressed VGLUT1 or VGLUT3. Co-expression with calcitonin gene-related peptide was only observed for VGLUT2. Occasional VGLUT2 immunoreactive neurons were seen in the major pelvic ganglia. Abundant VGLUT2 immunoreactive nerves were detected in the bladder dome and trigone, and the urethra. VGLUT1 immunoreactive nerves were discretely present. CONCLUSIONS We present what are to our knowledge novel data on VGLUT expression in sensory and autonomic neurons innervating the mouse bladder. The frequent association of VGLUT2 and calcitonin gene-related peptide in sensory neurons suggests interactions between glutamatergic and peptidergic neurotransmissions, potentially influencing commonly perceived sensations in the bladder, such as discomfort and pain.


Biomolecules | 2015

VGLUTs and Glutamate Synthesis—Focus on DRG Neurons and Pain

Mariana Malet; Pablo R. Brumovsky

The amino acid glutamate is the principal excitatory transmitter in the nervous system, including in sensory neurons that convey pain sensation from the periphery to the brain. It is now well established that a family of membrane proteins, termed vesicular glutamate transporters (VGLUTs), serve a critical function in these neurons: they incorporate glutamate into synaptic vesicles. VGLUTs have a central role both under normal neurotransmission and pathological conditions, such as neuropathic or inflammatory pain. In the present short review, we will address VGLUTs in the context of primary afferent neurons. We will focus on the role of VGLUTs in pain triggered by noxious stimuli, peripheral nerve injury, and tissue inflammation, as mostly explored in transgenic mice. The possible interplay between glutamate biosynthesis and VGLUT-dependent packaging in synaptic vesicles, and its potential impact in various pain states will be presented.

Collaboration


Dive into the Pablo R. Brumovsky's collaboration.

Top Co-Authors

Avatar

G.F. Gebhart

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Kim B. Seroogy

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jun Ho La

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bin Feng

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Carly McCarthy

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge