Pablo Servigne
Université libre de Bruxelles
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pablo Servigne.
Insectes Sociaux | 2008
Pablo Servigne; Claire Detrain
Abstract.Seed dispersal by ants (i.e. myrmecochory) is usually considered as a mutualism: ants feed on nutritive bodies, called elaiosomes, before rejecting and dispersing seeds in their nest surroundings. While mechanisms of plant dispersal in the field are well documented, the behaviour of the ant partner was rarely investigated in details. Here, we compared in laboratory conditions the foraging behaviour of two ant species, the omnivorous Lasius niger and the insectivorous Myrmica rubra to which seeds of two European myrmecochorous plants (Chelidonium majus and Viola odorata) were given. Ant colonies were simultaneously presented three types of items: entire seeds with elaiosome (SE), seeds without elaiosome (S) and detached elaiosomes (E). The presence of elaiosomes on seeds did not attract workers from a distance since ants first contact equally each type of items. Although ants are mass-recruiting species, we never observed any recruitment nor trail-laying behaviour towards seeds. For ants having contacted seed items, their antennation, manipulation and seed retrieval behaviour strongly varied depending on the species of each partner. Antennation behaviour, followed by a loss of contact, was the most frequent ant-seed interaction and can be considered as a “hesitation” clue. For both plant species, insectivorous Myrmica ants removed items in larger number and at higher speed than Lasius. This fits with the hypothesis of a convergence between odours of elaiosomes and insect preys. For both ant species, the small Chelidonium seeds were retrieved in higher proportion than Viola ones, confirming the hypothesis that ants prefer the higher elaiosome/diaspore-ratio. Thus, in these crossed experiments, the ant-plant pair Myrmica/Chelidonium was the most effective as ants removed quickly almost all items after a few antennations. The presence of an elaiosome body increased the seed removal by ants excepting for Myrmica which retrieved all Chelidonium seeds, even those deprived of their elaiosome. After 24 h, all the retrieved seeds were rejected out of the nest to the refuse piles. In at least half of these rejected items, the elaiosome was discarded by ants. Species-specific patterns and behavioural differences in the dynamics of myrmecochory are discussed at the light of ant ecology.
Ecological Research | 2010
Pablo Servigne; Claire Detrain
In the process of seed dispersal by ants (myrmecochory), foragers bring diaspores back to their nest, then eat the elaiosome and usually reject viable seeds outside the nest. Here, we investigate what happens inside the nest, a barely known stage of the myrmecochory process, for two seed species (Viola odorata, Chelidonium majus) dispersed either by the insectivorous ant Myrmica rubra or by the aphid-tending ant Lasius niger. Globally, elaiosome detachment decreased ants’ interest towards seeds and increased their probability of rejecting them. However, we found marked differences in seed management by ants inside the nest. The dynamics of elaiosome detachment were ant- and plant-specific whereas the dynamic of seed rejection were mainly ant-specific. Seeds remained for a shorter period of time inside the nest of the carnivorous ant Myrmica rubra than in Lasius niger nest. Thus, elaiosome detachment and seed rejection were two competing dynamics whose relative efficiency leads to variable outcomes in terms of types of dispersed items and of nutrient benefit to the ants. This is why some seeds remained inside the nest even without an elaiosome, and conversely, some seeds were rejected with an elaiosome still attached. Fresh seeds may be deposited directly in contact with the larvae. However, the dynamics of larvae-seeds contacts were also highly variable among species. This study illustrates the complexity and variability of the ecological network of ant–seed interactions.
Insect Science | 2018
Pablo Servigne; Jérôme Orivel; Frédéric Azémar; James M. Carpenter; Alain Dejean; Bruno Corbara
Although the Neotropical territorially dominant arboreal ant Azteca chartifex Forel is very aggressive towards any intruder, its populous colonies tolerate the close presence of the fierce polistine wasp Polybia rejecta (F.). In French Guiana, 83.33% of the 48 P. rejecta nests recorded were found side by side with those of A. chartifex. This nesting association results in mutual protection from predators (i.e., the wasps protected from army ants; the ants protected from birds). We conducted field studies, laboratory‐based behavioral experiments and chemical analyses to elucidate the mechanisms allowing the persistence of this association. Due to differences in the cuticular profiles of the two species, we eliminated the possibility of chemical mimicry. Also, analyses of the carton nests did not reveal traces of marking on the envelopes. Because ant forager flows were not perturbed by extracts from the wasps’ Dufours and venom glands, we rejected any hypothetical action of repulsive chemicals. Nevertheless, we noted that the wasps “scraped” the surface of the upper part of their nest envelope using their mandibles, likely removing the ants’ scent trails, and an experiment showed that ant foragers were perturbed by the removal of their scent trails. This leads us to use the term “erasure hypothesis.” Thus, this nesting association persists thanks to a relative tolerance by the ants towards wasp presence and the behavior of the wasps that allows them to “contain” their associated ants through the elimination of their scent trails, direct attacks, “wing‐buzzing” behavior and ejecting the ants.
Arthropod-plant Interactions | 2009
Pablo Servigne; Claire Detrain
Comptes Rendus Biologies | 2018
Bruno Corbara; Pablo Servigne; Alain Dejean; James M. Carpenter; Jérôme Orivel
Archive | 2010
Claire Detrain; Pablo Servigne
Archive | 2009
Claire Detrain; Pablo Servigne
Archive | 2008
Claire Detrain; Pablo Servigne
Archive | 2008
Pablo Servigne; Claire Detrain
Archive | 2006
Pablo Servigne; Claire Detrain