Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pablo Yarza is active.

Publication


Featured researches published by Pablo Yarza.


Nucleic Acids Research | 2012

The SILVA ribosomal RNA gene database project: improved data processing and web-based tools

Christian Quast; Elmar Pruesse; Pelin Yilmaz; Jan Gerken; Timmy Schweer; Pablo Yarza; Jörg Peplies; Frank Oliver Glöckner

SILVA (from Latin silva, forest, http://www.arb-silva.de) is a comprehensive web resource for up to date, quality-controlled databases of aligned ribosomal RNA (rRNA) gene sequences from the Bacteria, Archaea and Eukaryota domains and supplementary online services. The referred database release 111 (July 2012) contains 3 194 778 small subunit and 288 717 large subunit rRNA gene sequences. Since the initial description of the project, substantial new features have been introduced, including advanced quality control procedures, an improved rRNA gene aligner, online tools for probe and primer evaluation and optimized browsing, searching and downloading on the website. Furthermore, the extensively curated SILVA taxonomy and the new non-redundant SILVA datasets provide an ideal reference for high-throughput classification of data from next-generation sequencing approaches.


Nature Reviews Microbiology | 2014

Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences

Pablo Yarza; Pelin Yilmaz; Elmar Pruesse; Frank Oliver Glöckner; Wolfgang Ludwig; Karl-Heinz Schleifer; William B. Whitman; Jean Euzeby; Rudolf Amann; Ramon Rosselló-Móra

Publicly available sequence databases of the small subunit ribosomal RNA gene, also known as 16S rRNA in bacteria and archaea, are growing rapidly, and the number of entries currently exceeds 4 million. However, a unified classification and nomenclature framework for all bacteria and archaea does not yet exist. In this Analysis article, we propose rational taxonomic boundaries for high taxa of bacteria and archaea on the basis of 16S rRNA gene sequence identities and suggest a rationale for the circumscription of uncultured taxa that is compatible with the taxonomy of cultured bacteria and archaea. Our analyses show that only nearly complete 16S rRNA sequences give accurate measures of taxonomic diversity. In addition, our analyses suggest that most of the 16S rRNA sequences of the high taxa will be discovered in environmental surveys by the end of the current decade.


Nucleic Acids Research | 2014

The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks

Pelin Yilmaz; Laura Wegener Parfrey; Pablo Yarza; Jan Gerken; Elmar Pruesse; Christian Quast; Timmy Schweer; Jörg Peplies; Wolfgang Ludwig; Frank Oliver Glöckner

SILVA (from Latin silva, forest, http://www.arb-silva.de) is a comprehensive resource for up-to-date quality-controlled databases of aligned ribosomal RNA (rRNA) gene sequences from the Bacteria, Archaea and Eukaryota domains and supplementary online services. SILVA provides a manually curated taxonomy for all three domains of life, based on representative phylogenetic trees for the small- and large-subunit rRNA genes. This article describes the improvements the SILVA taxonomy has undergone in the last 3 years. Specifically we are focusing on the curation process, the various resources used for curation and the comparison of the SILVA taxonomy with Greengenes and RDP-II taxonomies. Our comparisons not only revealed a reasonable overlap between the taxa names, but also points to significant differences in both names and numbers of taxa between the three resources.


Frontiers in Microbiology | 2016

Expanding the World of Marine Bacterial and Archaeal Clades

Pelin Yilmaz; Pablo Yarza; Josephine Z. Rapp; Frank Oliver Glöckner

Determining which microbial taxa are out there, where they live, and what they are doing is a driving approach in marine microbial ecology. The importance of these questions is underlined by concerted, large-scale, and global ocean sampling initiatives, for example the International Census of Marine Microbes, Ocean Sampling Day, or Tara Oceans. Given decades of effort, we know that the large majority of marine Bacteria and Archaea belong to about a dozen phyla. In addition to the classically culturable Bacteria and Archaea, at least 50 “clades,” at different taxonomic depths, exist. These account for the majority of marine microbial diversity, but there is still an underexplored and less abundant portion remaining. We refer to these hitherto unrecognized clades as unknown, as their boundaries, names, and classifications are not available. In this work, we were able to characterize up to 92 of these unknown clades found within the bacterial and archaeal phylogenetic diversity currently reported for marine water column environments. We mined the SILVA 16S rRNA gene datasets for sequences originating from the marine water column. Instead of the usual subjective taxa delineation and nomenclature methods, we applied the candidate taxonomic unit (CTU) circumscription system, along with a standardized nomenclature to the sequences in newly constructed phylogenetic trees. With this new phylogenetic and taxonomic framework, we performed an analysis of ICoMM rRNA gene amplicon datasets to gain insights into the global distribution of the new marine clades, their ecology, biogeography, and interaction with oceanographic variables. Most of the new clades we identified were interspersed by known taxa with cultivated members, whose genome sequences are available. This result encouraged us to perform metabolic predictions for the novel marine clades using the PICRUSt approach. Our work also provides an update on the taxonomy of several phyla and widely known marine clades as our CTU approach breaks down these randomly lumped clades into smaller objectively calculated subgroups. Finally, all taxa were classified and named following standards compatible with the Bacteriological Code rules, enhancing their digitization, and comparability with future microbial ecological and taxonomy studies.


Environmental Microbiology | 2010

The metavirome of a hypersaline environment

Fernando Santos; Pablo Yarza; Victor Parro; Carlos Briones; Josefa Antón

Hypersaline environments harbour the highest number of virus-like particles reported for planktonic systems. However, very little is known about the genomic diversity of these virus assemblages since most of the knowledge on halophages is based on the analysis of a few isolates infecting strains of hyperhalophilic Archaea that may not be representatives of the natural microbiota. Here, we report the characterization, through a metagenomic approach, of the viral assemblage inhabiting a crystallizer pond (CR30) from a multi-pond solar saltern in Santa Pola (SE Spain). A total of 1.35 Mbp were cloned that yielded a total of 620 kb sequenced viral DNA. The metavirome was highly diverse and different from virus communities of marine and other aquatic environments although it showed some similarities with metaviromes from high-salt ponds in solar salterns in San Diego (SW USA), indicating some common traits between high-salt viromes. A high degree of diversity was found in the halophages as revealed by the presence of 2479 polymorphic nucleotides. Dinucleotide frequency analysis of the CR30 metavirome showed a good correlation with GC content and enabled the establishment of different groups, and even the assignment of their putative hosts: the archaeon Haloquadratum walsbyi and the bacterium Salinibacter ruber.


The ISME Journal | 2010

Fine-scale evolution: genomic, phenotypic and ecological differentiation in two coexisting Salinibacter ruber strains

Arantxa Peña; Hanno Teeling; Jaime Huerta-Cepas; Fernando Santos; Pablo Yarza; Jocelyn Brito-Echeverría; Marianna Lucio; Philippe Schmitt-Kopplin; Inmaculada Meseguer; Chantal Schenowitz; Carole Dossat; Valérie Barbe; Joaquín Dopazo; Ramon Rosselló-Móra; Margarete Schüler; Frank Oliver Glöckner; Rudolf Amann; Toni Gabaldón; Josefa Antón

Genomic and metagenomic data indicate a high degree of genomic variation within microbial populations, although the ecological and evolutive meaning of this microdiversity remains unknown. Microevolution analyses, including genomic and experimental approaches, are so far very scarce for non-pathogenic bacteria. In this study, we compare the genomes, metabolomes and selected ecological traits of the strains M8 and M31 of the hyperhalophilic bacterium Salinibacter ruber that contain ribosomal RNA (rRNA) gene and intergenic regions that are identical in sequence and were simultaneously isolated from a Mediterranean solar saltern. Comparative analyses indicate that S. ruber genomes present a mosaic structure with conserved and hypervariable regions (HVRs). The HVRs or genomic islands, are enriched in transposases, genes related to surface properties, strain-specific genes and highly divergent orthologous. However, the many indels outside the HVRs indicate that genome plasticity extends beyond them. Overall, 10% of the genes encoded in the M8 genome are absent from M31 and could stem from recent acquisitions. S. ruber genomes also harbor 34 genes located outside HVRs that are transcribed during standard growth and probably derive from lateral gene transfers with Archaea preceding the M8/M31 divergence. Metabolomic analyses, phage susceptibility and competition experiments indicate that these genomic differences cannot be considered neutral from an ecological perspective. The results point to the avoidance of competition by micro-niche adaptation and response to viral predation as putative major forces that drive microevolution within these Salinibacter strains. In addition, this work highlights the extent of bacterial functional diversity and environmental adaptation, beyond the resolution of the 16S rRNA and internal transcribed spacers regions.


Environmental Microbiology | 2011

Response of sulfate-reducing bacteria to an artificial oil-spill in a coastal marine sediment

Ana Suárez-Suárez; Arantxa López-López; Antonio Tovar-Sánchez; Pablo Yarza; Alejandro Orfila; Jorge Terrados; Julia Arnds; Silvia Marqués; Helge Niemann; Philippe Schmitt-Kopplin; Rudolf Amann; Ramon Rosselló-Móra

In situ mesocosm experiments using a calcareous sand flat from a coastal area of the island of Mallorca in the Mediterranean Sea were performed in order to study the response of sulfate-reducing bacteria (SRB) to controlled crude oil contamination, or heavy contamination with naphthalene. Changes in the microbial community caused by the contamination were monitored by a combination of comparative sequence analysis of 16S rRNA genes, fluorescence in situ hybridization, cultivation approaches and metabolic activity rates. Our results showed that crude oil and naphthalene negatively influenced the total microbial community as the natural increase in cell numbers due to the seasonal dynamics was attenuated. However, both contaminants enhanced the sulfate reduction rates, as well as the culturability of SRB. Our results suggested the presence of autochthonous deltaproteobacterial SRBs that were able to degrade crude oil or polycyclic aromatic hydrocarbons such as naphthalene in anaerobic sediment layers.


Environmental Microbiology Reports | 2010

Extremely halophilic microbial communities in anaerobic sediments from a solar saltern

Arantxa López-López; Pablo Yarza; Michael Richter; Ana Suárez-Suárez; Josefa Antón; Helge Niemann; Ramon Rosselló-Móra

The prokaryotic communities inhabiting hypersaline sediments underlying a crystallizer pond of a Mediterranean solar saltern have been studied in a polyphasic approach including 16S rRNA and dsrAB gene libraries analysis [the last encoding for dissimilatory (bi)sulfite reductase], most probable number of cultivable counts, and metabolic measurements of sulfate reduction. The samples studied here represent one of the most hypersaline anoxic environments sampled worldwide that harbour a highly diverse microbial community different from those previously reported in other hypersaline sediments. Both bacterial and archaeal types are present but, contrarily to the overlying brine system, the former dominates. Molecular analyses indicated that the bacterial fraction is highly diverse and mostly composed by groups related to sulfate-reducing bacteria (SRB). In good agreement with this, sulfate-reducing activity was detected in the sediment, as well as the metabolic diversity within SRB (as indicated by the use of different electron donors in enrichments). On the other hand, the archaeal fraction was phylogenetically homogeneous and, surprisingly, strongly affiliated with the MBSl-1 candidate division, an euryarchaeotal group only reported in deep-sea hypersaline anoxic basins of the Western Mediterranean, for which a methanogenic metabolism was hypothesized. The hypersaline studied samples constitute a valuable source of new prokaryotic types with metabolisms adapted to the prevalent in situ extreme conditions.


Standards in Genomic Sciences | 2010

Complete genome sequence of Marinobacter adhaerens type strain (HP15), a diatom-interacting marine microorganism.

Astrid Gärdes; Eva Kaeppel; Aamir Shehzad; Shalin Seebah; Hanno Teeling; Pablo Yarza; Frank Oliver Glöckner; Hans-Peter Grossart; Matthias S. Ullrich

Marinobacter adhaerens HP15 is the type strain of a newly identified marine species, which is phylogenetically related to M. flavimaris, M. algicola, and M. aquaeolei. It is of special interest for research on marine aggregate formation because it showed specific attachment to diatom cells. In vitro it led to exopolymer formation and aggregation of these algal cells to form marine snow particles. M. adhaerens HP15 is a free-living, motile, rod-shaped, Gram-negative gammaproteobacterium, which was originally isolated from marine particles sampled in the German Wadden Sea. M. adhaerens HP15 grows heterotrophically on various media, is easy to access genetically, and serves as a model organism to investigate the cellular and molecular interactions with the diatom Thalassiosira weissflogii. Here we describe the complete and annotated genome sequence of M. adhaerens HP15 as well as some details on flagella-associated genes. M. adhaerens HP15 possesses three replicons; the chromosome comprises 4,422,725 bp and codes for 4,180 protein-coding genes, 51 tRNAs and three rRNA operons, while the two circular plasmids are ∼187 kb and ∼42 kb in size and contain 178 and 52 protein-coding genes, respectively.


Systematic and Applied Microbiology | 2010

Pseudomonas arsenicoxydans sp nov., an arsenite-oxidizing strain isolated from the Atacama desert.

V. L. Campos; Cristian Valenzuela; Pablo Yarza; Peter Kämpfer; Roberto Vidal; Claudio A. Zaror; M. A. Mondaca; Arantxa López-López; Ramon Rosselló-Móra

A Gram-negative, arsenite-oxidizing bacterial strain, designated VC-1, was isolated from sediment samples from the Camarones Valley in the Atacama Desert, Chile. Strain VC-1 was strictly aerobic, oxidase and catalase positive, rod shaped, of about 5.5 microm in length and 0.5-1.0 microm in diameter. It was motile by means of multiple polar flagella. The phylogenetic reconstruction of the 16S rRNA gene sequence, an MLSA study by concatenating six genes, and DDH studies indicated that the strain differed genotypically from its closest relatives and was therefore recognized as a new species within the genus Pseudomonas. Phenotypic analysis combining metabolic tests, fatty acid profiles and MALDI-TOF profiles of total cell extracts supported the classification of the new species for which we propose the designation Pseudomonas arsenicoxydans sp. nov. The type strain is accessible under the culture collection numbers CCUG 58201(T) and CECT 7543(T).

Collaboration


Dive into the Pablo Yarza's collaboration.

Top Co-Authors

Avatar

Ramon Rosselló-Móra

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean Euzeby

École nationale vétérinaire de Toulouse

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arantxa López-López

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Raul Munoz

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge