Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Padhraig Gormley is active.

Publication


Featured researches published by Padhraig Gormley.


Nature | 2014

De novo mutations in schizophrenia implicate synaptic networks

Menachem Fromer; Andrew Pocklington; David H. Kavanagh; Hywel Williams; Sarah Dwyer; Padhraig Gormley; Lyudmila Georgieva; Elliott Rees; Priit Palta; Douglas M. Ruderfer; Noa Carrera; Isla Humphreys; Jessica S. Johnson; Panos Roussos; Douglas D. Barker; Eric Banks; Vihra Milanova; Seth G. N. Grant; Eilis Hannon; Samuel A. Rose; K D Chambert; Milind Mahajan; Edward M. Scolnick; Jennifer L. Moran; George Kirov; Aarno Palotie; Steven A. McCarroll; Peter Holmans; Pamela Sklar; Michael John Owen

Inherited alleles account for most of the genetic risk for schizophrenia. However, new (de novo) mutations, in the form of large chromosomal copy number changes, occur in a small fraction of cases and disproportionally disrupt genes encoding postsynaptic proteins. Here we show that small de novo mutations, affecting one or a few nucleotides, are overrepresented among glutamatergic postsynaptic proteins comprising activity-regulated cytoskeleton-associated protein (ARC) and N-methyl-d-aspartate receptor (NMDAR) complexes. Mutations are additionally enriched in proteins that interact with these complexes to modulate synaptic strength, namely proteins regulating actin filament dynamics and those whose messenger RNAs are targets of fragile X mental retardation protein (FMRP). Genes affected by mutations in schizophrenia overlap those mutated in autism and intellectual disability, as do mutation-enriched synaptic pathways. Aligning our findings with a parallel case–control study, we demonstrate reproducible insights into aetiological mechanisms for schizophrenia and reveal pathophysiology shared with other neurodevelopmental disorders.


Nature Genetics | 2013

Genome-wide meta-analysis identifies new susceptibility loci for migraine

Verneri Anttila; Bendik S. Winsvold; Padhraig Gormley; Tobias Kurth; Francesco Bettella; George McMahon; Mikko Kallela; Rainer Malik; Boukje de Vries; Gisela M. Terwindt; Sarah E. Medland; Unda Todt; Wendy L. McArdle; Lydia Quaye; Markku Koiranen; M. Arfan Ikram; Terho Lehtimäki; Anine H. Stam; Lannie Ligthart; Juho Wedenoja; Ian Dunham; Benjamin M. Neale; Priit Palta; Eija Hämäläinen; Markus Schuerks; Lynda M. Rose; Julie E. Buring; Paul M. Ridker; Stacy Steinberg; Hreinn Stefansson

Migraine is the most common brain disorder, affecting approximately 14% of the adult population, but its molecular mechanisms are poorly understood. We report the results of a meta-analysis across 29 genome-wide association studies, including a total of 23,285 individuals with migraine (cases) and 95,425 population-matched controls. We identified 12 loci associated with migraine susceptibility (P < 5 × 10−8). Five loci are new: near AJAP1 at 1p36, near TSPAN2 at 1p13, within FHL5 at 6q16, within C7orf10 at 7p14 and near MMP16 at 8q21. Three of these loci were identified in disease subgroup analyses. Brain tissue expression quantitative trait locus analysis suggests potential functional candidate genes at four loci: APOA1BP, TBC1D7, FUT9, STAT6 and ATP5B.


Nature Genetics | 2014

De novo mutations in HCN1 cause early infantile epileptic encephalopathy

Caroline Nava; Carine Dalle; Agnès Rastetter; Pasquale Striano; Carolien G.F. de Kovel; Rima Nabbout; Claude Cances; Dorothée Ville; Eva H. Brilstra; Giuseppe Gobbi; Emmanuel Raffo; Delphine Bouteiller; Yannick Marie; Oriane Trouillard; Angela Robbiano; Boris Keren; Dahbia Agher; Emmanuel Roze; Suzanne Lesage; Aude Nicolas; Alexis Brice; Michel Baulac; Cornelia Vogt; Nady El Hajj; Eberhard Schneider; Arvid Suls; Sarah Weckhuysen; Padhraig Gormley; Anna-Elina Lehesjoki; Peter De Jonghe

Hyperpolarization-activated, cyclic nucleotide–gated (HCN) channels contribute to cationic Ih current in neurons and regulate the excitability of neuronal networks. Studies in rat models have shown that the Hcn1 gene has a key role in epilepsy, but clinical evidence implicating HCN1 mutations in human epilepsy is lacking. We carried out exome sequencing for parent-offspring trios with fever-sensitive, intractable epileptic encephalopathy, leading to the discovery of two de novo missense HCN1 mutations. Screening of follow-up cohorts comprising 157 cases in total identified 4 additional amino acid substitutions. Patch-clamp recordings of Ih currents in cells expressing wild-type or mutant human HCN1 channels showed that the mutations had striking but divergent effects on homomeric channels. Individuals with mutations had clinical features resembling those of Dravet syndrome with progression toward atypical absences, intellectual disability and autistic traits. These findings provide clear evidence that de novo HCN1 point mutations cause a recognizable early-onset epileptic encephalopathy in humans.


Molecular Genetics & Genomic Medicine | 2016

Pitfalls in genetic testing : the story of missed SCN1A mutations

Tania Djémié; Sarah Weckhuysen; Sarah von Spiczak; Gemma L. Carvill; Johanna Jaehn; Anna-Kaisa Anttonen; Eva H. Brilstra; Hande Caglayan; Carolien G.F. de Kovel; Christel Depienne; Eija Gaily; Elena Gennaro; Beatriz G. Giráldez; Padhraig Gormley; Rosa Guerrero-López; Renzo Guerrini; Eija Hämäläinen; Corinna Hartmann; Laura Hernandez-Hernandez; Helle Hjalgrim; Bobby P. C. Koeleman; Eric LeGuern; Anna-Elina Lehesjoki; Johannes R. Lemke; Costin Leu; Carla Marini; Jacinta M. McMahon; Davide Mei; Rikke S. Møller; Hiltrud Muhle

Sanger sequencing, still the standard technique for genetic testing in most diagnostic laboratories and until recently widely used in research, is gradually being complemented by next‐generation sequencing (NGS). No single mutation detection technique is however perfect in identifying all mutations. Therefore, we wondered to what extent inconsistencies between Sanger sequencing and NGS affect the molecular diagnosis of patients. Since mutations in SCN1A, the major gene implicated in epilepsy, are found in the majority of Dravet syndrome (DS) patients, we focused on missed SCN1A mutations.


Translational Psychiatry | 2015

Analysis of exome sequence in 604 trios for recessive genotypes in schizophrenia.

Elliott Rees; George Kirov; James Tynan Rhys Walters; Alexander Richards; Daniel P. Howrigan; David H. Kavanagh; Andrew Pocklington; Menachem Fromer; Douglas M. Ruderfer; Lyudmila Georgieva; Noa Carrera; Padhraig Gormley; Priit Palta; H. J. Williams; Sarah Dwyer; Jessica S. Johnson; Panos Roussos; Douglas Barker; Eric Banks; Vihra Milanova; Samuel A. Rose; K D Chambert; Milind Mahajan; Edward M. Scolnick; Jennifer L. Moran; Ming T. Tsuang; Stephen J. Glatt; Wei J. Chen; H-G Hwu; Stephen V. Faraone

Genetic associations involving both rare and common alleles have been reported for schizophrenia but there have been no systematic scans for rare recessive genotypes using fully phased trio data. Here, we use exome sequencing in 604 schizophrenia proband–parent trios to investigate the role of recessive (homozygous or compound heterozygous) nonsynonymous genotypes in the disorder. The burden of recessive genotypes was not significantly increased in probands at either a genome-wide level or in any individual gene after adjustment for multiple testing. At a system level, probands had an excess of nonsynonymous compound heterozygous genotypes (minor allele frequency, MAF ⩽1%) in voltage-gated sodium channels (VGSCs; eight in probands and none in parents, P=1.5 × 10−4). Previous findings of multiple de novo loss-of-function mutations in this gene family, particularly SCN2A, in autism and intellectual disability provide biological and genetic plausibility for this finding. Pointing further to the involvement of VGSCs in schizophrenia, we found that these genes were enriched for nonsynonymous mutations (MAF ⩽0.1%) in cases genotyped using an exome array, (5585 schizophrenia cases and 8103 controls), and that in the trios data, synaptic proteins interacting with VGSCs were also enriched for both compound heterozygosity (P=0.018) and de novo mutations (P=0.04). However, we were unable to replicate the specific association with compound heterozygosity at VGSCs in an independent sample of Taiwanese schizophrenia trios (N=614). We conclude that recessive genotypes do not appear to make a substantial contribution to schizophrenia at a genome-wide level. Although multiple lines of evidence, including several from this study, suggest that rare mutations in VGSCs contribute to the disorder, in the absence of replication of the original findings regarding compound heterozygosity, this conclusion requires evaluation in a larger sample of trios.


EBioMedicine | 2015

Genome-wide Polygenic Burden of Rare Deleterious Variants in Sudden Unexpected Death in Epilepsy.

Costin Leu; Simona Balestrini; Bridget Maher; Laura Hernandez-Hernandez; Padhraig Gormley; Eija Hämäläinen; Kristin Heggeli; Natasha E. Schoeler; Jan Novy; Joseph Willis; Vincent Plagnol; Rachael Ellis; Eleanor Reavey; Mary O'Regan; William O. Pickrell; Rhys Huw Thomas; Seo-Kyung Chung; Norman Delanty; Jacinta M. McMahon; Stephen Malone; Lynette G. Sadleir; Samuel F. Berkovic; Lina Nashef; Sameer M. Zuberi; Mark I. Rees; Gianpiero L. Cavalleri; Josemir W. Sander; Elaine Hughes; J. Helen Cross; Ingrid E. Scheffer

Sudden unexpected death in epilepsy (SUDEP) represents the most severe degree of the spectrum of epilepsy severity and is the commonest cause of epilepsy-related premature mortality. The precise pathophysiology and the genetic architecture of SUDEP remain elusive. Aiming to elucidate the genetic basis of SUDEP, we analysed rare, protein-changing variants from whole-exome sequences of 18 people who died of SUDEP, 87 living people with epilepsy and 1479 non-epilepsy disease controls. Association analysis revealed a significantly increased genome-wide polygenic burden per individual in the SUDEP cohort when compared to epilepsy (P = 5.7 × 10− 3) and non-epilepsy disease controls (P = 1.2 × 10− 3). The polygenic burden was driven both by the number of variants per individual, and over-representation of variants likely to be deleterious in the SUDEP cohort. As determined by this study, more than a thousand genes contribute to the observed polygenic burden within the framework of this study. Subsequent gene-based association analysis revealed five possible candidate genes significantly associated with SUDEP or epilepsy, but no one single gene emerges as common to the SUDEP cases. Our findings provide further evidence for a genetic susceptibility to SUDEP, and suggest an extensive polygenic contribution to SUDEP causation. Thus, an overall increased burden of deleterious variants in a highly polygenic background might be important in rendering a given individual more susceptible to SUDEP. Our findings suggest that exome sequencing in people with epilepsy might eventually contribute to generating SUDEP risk estimates, promoting stratified medicine in epilepsy, with the eventual aim of reducing an individual patients risk of SUDEP.


Circulation | 2018

Phenotypic Consequences of a Genetic Predisposition to Enhanced Nitric Oxide Signaling

Connor A. Emdin; Amit Khera; Derek Klarin; Pradeep Natarajan; Seyedeh M. Zekavat; Akihiro Nomura; Mary E. Haas; Krishna G. Aragam; Diego Ardissino; James G. Wilson; Heribert Schunkert; Ruth McPherson; Hugh Watkins; Roberto Elosua; Matthew J. Bown; Nilesh J. Samani; Usman Baber; Jeanette Erdmann; Padhraig Gormley; Aarno Palotie; Nathan O. Stitziel; Namrata Gupta; John Danesh; Danish Saleheen; Stacey Gabriel; Sekar Kathiresan

Background: Nitric oxide signaling plays a key role in the regulation of vascular tone and platelet activation. Here, we seek to understand the impact of a genetic predisposition to enhanced nitric oxide signaling on risk for cardiovascular diseases, thus informing the potential utility of pharmacological stimulation of the nitric oxide pathway as a therapeutic strategy. Methods: We analyzed the association of common and rare genetic variants in 2 genes that mediate nitric oxide signaling (Nitric Oxide Synthase 3 [NOS3] and Guanylate Cyclase 1, Soluble, Alpha 3 [GUCY1A3]) with a range of human phenotypes. We selected 2 common variants (rs3918226 in NOS3 and rs7692387 in GUCY1A3) known to associate with increased NOS3 and GUCY1A3 expression and reduced mean arterial pressure, combined them into a genetic score, and standardized this exposure to a 5 mm Hg reduction in mean arterial pressure. Using individual-level data from 335 464 participants in the UK Biobank and summary association results from 7 large-scale genome-wide association studies, we examined the effect of this nitric oxide signaling score on cardiometabolic and other diseases. We also examined whether rare loss-of-function mutations in NOS3 and GUCY1A3 were associated with coronary heart disease using gene sequencing data from the Myocardial Infarction Genetics Consortium (n=27 815). Results: A genetic predisposition to enhanced nitric oxide signaling was associated with reduced risks of coronary heart disease (odds ratio, 0.37; 95% confidence interval [CI], 0.31-0.45; P=5.5*10–26], peripheral arterial disease (odds ratio 0.42; 95% CI, 0.26-0.68; P=0.0005), and stroke (odds ratio, 0.53; 95% CI, 0.37-0.76; P=0.0006). In a mediation analysis, the effect of the genetic score on decreased coronary heart disease risk extended beyond its effect on blood pressure. Conversely, rare variants that inactivate the NOS3 or GUCY1A3 genes were associated with a 23 mm Hg higher systolic blood pressure (95% CI, 12-34; P=5.6*10–5) and a 3-fold higher risk of coronary heart disease (odds ratio, 3.03; 95% CI, 1.29-7.12; P=0.01). Conclusions: A genetic predisposition to enhanced nitric oxide signaling is associated with reduced risks of coronary heart disease, peripheral arterial disease, and stroke. Pharmacological stimulation of nitric oxide signaling may prove useful in the prevention or treatment of cardiovascular disease.


Embo Molecular Medicine | 2017

Simultaneous impairment of neuronal and metabolic function of mutated gephyrin in a patient with epileptic encephalopathy

Borislav Dejanovic; Tania Djémié; Nora Grünewald; Arvid Suls; Vanessa Kress; Florian Hetsch; Dana Craiu; Matthew Zemel; Padhraig Gormley; Dennis Lal; Candace T. Myers; Mefford Hc; Aarno Palotie; Ingo Helbig; Jochen C. Meier; Sarah Weckhuysen; Guenter Schwarz

Synaptic inhibition is essential for shaping the dynamics of neuronal networks, and aberrant inhibition plays an important role in neurological disorders. Gephyrin is a central player at inhibitory postsynapses, directly binds and organizes GABAA and glycine receptors (GABAARs and GlyRs), and is thereby indispensable for normal inhibitory neurotransmission. Additionally, gephyrin catalyzes the synthesis of the molybdenum cofactor (MoCo) in peripheral tissue. We identified a de novo missense mutation (G375D) in the gephyrin gene (GPHN) in a patient with epileptic encephalopathy resembling Dravet syndrome. Although stably expressed and correctly folded, gephyrin‐G375D was non‐synaptically localized in neurons and acted dominant‐negatively on the clustering of wild‐type gephyrin leading to a marked decrease in GABAAR surface expression and GABAergic signaling. We identified a decreased binding affinity between gephyrin‐G375D and the receptors, suggesting that Gly375 is essential for gephyrin–receptor complex formation. Surprisingly, gephyrin‐G375D was also unable to synthesize MoCo and activate MoCo‐dependent enzymes. Thus, we describe a missense mutation that affects both functions of gephyrin and suggest that the identified defect at GABAergic synapses is the mechanism underlying the patients severe phenotype.


PLOS ONE | 2016

Evaluation of Presumably Disease Causing SCN1A Variants in a Cohort of Common Epilepsy Syndromes.

Dennis Lal; Eva M. Reinthaler; Borislav Dejanovic; Patrick May; Holger Thiele; Anna-Elina Lehesjoki; Günter Schwarz; Erik Riesch; M. Arfan Ikram; Cornelia M. van Duijn; André G. Uitterlinden; Albert Hofman; Hannelore Steinböck; Ursula Gruber-Sedlmayr; Birgit Neophytou; Federico Zara; Andreas Hahn; Padhraig Gormley; Felicitas Becker; Yvonne G. Weber; Maria Roberta Cilio; Wolfram S. Kunz; Roland Krause; Fritz Zimprich; Johannes R. Lemke; Peter Nürnberg; Thomas Sander; Holger Lerche; Bernd A. Neubauer

Objective The SCN1A gene, coding for the voltage-gated Na+ channel alpha subunit NaV1.1, is the clinically most relevant epilepsy gene. With the advent of high-throughput next-generation sequencing, clinical laboratories are generating an ever-increasing catalogue of SCN1A variants. Variants are more likely to be classified as pathogenic if they have already been identified previously in a patient with epilepsy. Here, we critically re-evaluate the pathogenicity of this class of variants in a cohort of patients with common epilepsy syndromes and subsequently ask whether a significant fraction of benign variants have been misclassified as pathogenic. Methods We screened a discovery cohort of 448 patients with a broad range of common genetic epilepsies and 734 controls for previously reported SCN1A mutations that were assumed to be disease causing. We re-evaluated the evidence for pathogenicity of the identified variants using in silico predictions, segregation, original reports, available functional data and assessment of allele frequencies in healthy individuals as well as in a follow up cohort of 777 patients. Results and Interpretation We identified 8 known missense mutations, previously reported as pathogenic, in a total of 17 unrelated epilepsy patients (17/448; 3.80%). Our re-evaluation indicates that 7 out of these 8 variants (p.R27T; p.R28C; p.R542Q; p.R604H; p.T1250M; p.E1308D; p.R1928G; NP_001159435.1) are not pathogenic. Only the p.T1174S mutation may be considered as a genetic risk factor for epilepsy of small effect size based on the enrichment in patients (P = 6.60 x 10−4; OR = 0.32, fishers exact test), previous functional studies but incomplete penetrance. Thus, incorporation of previous studies in genetic counseling of SCN1A sequencing results is challenging and may produce incorrect conclusions.


Genome Medicine | 2016

Migraine genetics: from genome-wide association studies to translational insights

Padhraig Gormley; Bendik S. Winsvold; Dale R. Nyholt; Mikko Kallela; Daniel I. Chasman; Aarno Palotie

Editorial summary Understanding the molecular mechanisms that precede and give rise to a migraine attack is key to developing new therapeutic strategies. Advances towards this goal have recently been made through genome-wide association studies, which have identified new genetic components of migraine that highlight vascular etiologies and underline the polygenic nature of this disorder.

Collaboration


Dive into the Padhraig Gormley's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Priit Palta

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar

Dennis Lal

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mikko Kallela

Helsinki University Central Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge