Pairot Pramual
Mahasarakham University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pairot Pramual.
Molecular Ecology Resources | 2014
Pairot Pramual; Peter H. Adler
The ecological and medical importance of black flies drives the need for rapid and reliable identification of these minute, structurally uniform insects. We assessed the efficiency of DNA barcoding for species identification of tropical black flies. A total of 351 cytochrome c oxidase subunit 1 sequences were obtained from 41 species in six subgenera of the genus Simulium in Thailand. Despite high intraspecific genetic divergence (mean = 2.00%, maximum = 9.27%), DNA barcodes provided 96% correct identification. Barcodes also differentiated cytoforms of selected species complexes, albeit with varying levels of success. Perfect differentiation was achieved for two cytoforms of Simulium feuerborni, and 91% correct identification was obtained for the Simulium angulistylum complex. Low success (33%), however, was obtained for the Simulium siamense complex. The differential efficiency of DNA barcodes to discriminate cytoforms was attributed to different levels of genetic structure and demographic histories of the taxa. DNA barcode trees were largely congruent with phylogenies based on previous molecular, chromosomal and morphological analyses, but revealed inconsistencies that will require further evaluation.
Genetica | 2010
Suwannee Phayuhasena; Donald J. Colgan; Chaliow Kuvangkadilok; Pairot Pramual; Visut Baimai
Simulium is a very speciose genus of the black fly family Simuliidae that includes many important pests of humans and animals. Cytotaxonomic and morphological studies have made substantial progress in Simulium systematics. 16S rRNA and ITS-1 DNA sequence studies have assisted this progress. Intensive multi-gene molecular systematic investigations will, however, be required for a comprehensive understanding of the genus’ taxonomy and evolution. Our research was conducted to investigate the relationships of Thai Simulium at the subgeneric, species group and species levels. We also examined the possibility of using mitochondrial DNA sequences to facilitate Simulium species identification. Data were collected from three mitochondrial genes (COI, ND4 and 16S rRNA) and two segments of the nuclear 28S ribosomal RNA (the D1 to D2 and the D4 expansion regions). The subgenera Simulium and Gomphostilbia were monophyletic in most analyses. Nevermannia included Montisimulium but was otherwise monophyletic in multigene analyses. In most analyses, Simulium and Nevermannia were more closely related to each other than to Gomphostilbia which was usually basal. Species groups were generally monophyletic. Within Gomphostilbia, however, the batoense species group was always paraphyletic to the other two species groups found in Thailand. Three species groups in Simulium were not monophyletic. The tendency to gill filament number reduction for some species groups in the subgenus Simulium was associated with a derived position in multigene analyses. Most species were monophyletic with two exceptions that probably represent species complexes and will present difficulties for rapid mitochondrial DNA identification.
Scientific Reports | 2016
Van Lun Low; Hiroyuki Takaoka; Pairot Pramual; Peter H. Adler; Zubaidah Ya’cob; Yao-Te Huang; Xuan Da Pham; Rosli Ramli; Chee Dhang Chen; Anukhcha Wannaket; Mohd Sofian-Azirun
Perspicuous assessments of taxonomic boundaries and discovery of cryptic taxa are of paramount importance in interpreting ecological and evolutionary phenomena among black flies (Simuliidae) and combating associated vector-borne diseases. Simulium tani Takaoka & Davies is the largest and perhaps the most taxonomically challenging species complex of black flies in the Oriental Region. We use a DNA sequence-based method to delineate currently recognized chromosomal and morphological taxa in the S. tani complex on the Southeast Asian mainland and Taiwan, while elucidating their phylogenetic relationships. A molecular approach using multiple genes, coupled with morphological and chromosomal data, supported recognition of cytoform K and morphoform ‘b’ as valid species; indicated that S. xuandei, cytoform L, and morphoform ‘a’ contain possible cryptic species; and suggested that cytoform B is in the early stages of reproductive isolation whereas lineage sorting is incomplete in cytoforms A, C, and G.
Entomological Science | 2013
Pairot Pramual; Komgrit Wongpakam
In this study, we examined the genetic structure and population history of the high elevation black fly Simulium feuerborni in Thailand at both cytogenetic and molecular genetic levels. Cytological examination revealed two cytoforms differentiated by fixed chromosome inversions. The distributions of the cytoforms were associated with geographic origins. Cytoform A was found in the lower north and northeast, and cytoform B was found in the upper northern region of Thailand. Molecular data based on the mitochondrial cytochrome oxidase subunit I (COI) barcoding sequence supports the separation of the cytoforms. The average sequence divergence between the two cytoforms was 3.75%, which is higher than the threshold value for the species level based on a COI barcoding sequence. Median joining network clearly differentiated the haplotypes of the cytoforms into different lineages. Population pairwise FST and amova analyses reveal significant genetic differentiation between cytoforms. This indicates that the low land areas separating these populations act as a gene flow barrier. No genetic differentiation was detected within cytoforms. This could be due to a recent sharing of population history. Mismatch distribution analysis revealed population expansion in the northern lineage of the cytoform B approximately 220 000 years ago. More recent expansion (32 000 years ago) was found in the lower north and northeast (cytoform A) lineage. The demographic history of S. feuerborni mirrored previous findings in black flies and other insect species in Thailand. This indicates the important role of Pleistocene climatic change on genetic structure and diversity of Southeast Asian mainland species.
Entomological Science | 2010
Pairot Pramual; Komgrit Wongpakam
Seasonal variation of the physicochemical conditions of streams plays an important role in aquatic insect diversity and community structure. Asian tropical streams profoundly change between seasons due to the effects of monsoons. However, little is known about how these changes affect aquatic insect diversity and community structure. The objectives of this study are to examine seasonal variations of the physicochemical conditions in tropical streams in Thailand and to assess the effects of these changes on black fly community structure and diversity. Black flies were sampled and physicochemical conditions recorded at eight sites between December 2007 and December 2008. A total of 10 black fly species were found. Comparisons of the streams between seasons revealed that physical conditions related to rainfall rate were significantly different. Canonical correspondence analysis differentiated sampling sites from each season. Streams in the rainy season were faster and deeper, with higher discharge and conductivity than those of the cold and dry seasons. Species richness was significantly higher in the rainy season than in the cold and dry seasons (F = 6.23, P = 0.004). Community structure profoundly changed between the low‐flow season (cold and dry) and high‐flow season. Black fly species found predominantly in the low‐flow season (Simulium siamense“cytoform A”, S. aureohirtum) decreased dramatically during the high‐flow season. In contrast, species found at high frequency during the high‐flow season (S. nakhonense, S. angulistylum) disappeared in the low‐flow season. The study demonstrates the importance of seasonal variation of stream conditions on black fly community structure and diversity.
Entomological Science | 2012
Pairot Pramual; Piyamas Nanork
Phylogenetic relationships among four species of the Simulium multistriatum group (Diptera: Simuliidae) in Thailand were examined based on two mitochondrial genes (COI, COII) and one nuclear gene (18S/ITS1). Simulium takense was found to be genetically divergent (>20.3% for COI) from the other species, consistent with their distinctive morphology. Simulium chainarongi and S. chaliowae were monophyletic but were included in paraphyletic S. fenestratum. Simulium fenestratum was divided into three distinct lineages with high levels of genetic divergence. This suggests that S. fenestratum is a species complex. Neither morphological nor cytological examinations revealed evidence of sibling species. The clades derived from phylogenetic analyses were found to be correlated with the ecological conditions of larval habitat. Therefore, ecological adaptation may have played a role in black fly diversification and evolution. These results suggest the use of integrated, multidisciplinary approaches for fully understanding black fly biodiversity and systematics.
Entomological Science | 2014
Kowit Meeyen; Piyamas Nanork Sopaladawan; Pairot Pramual
The fruit fly Bactrocera latifrons (Hendel) is an important pest of commercially significant plants such as chili, tomato and eggplant. The species is native to South and Southeast Asia, but has now invaded Japan, Hawaii and Africa. In this study, mitochondrial DNA sequences were used to infer genetic structure and demographic history of B. latifrons. The efficiency of DNA barcodes for identification of B. latifrons was also tested. Ninety‐three specimens infesting four host‐plant species were obtained from 11 sampling locations in Thailand. The mitochondrial haplotype network revealed no major divergent lineage, which was consistent with a phylogenetic analysis that found strong support for the monophyly of B. latifrons. Population pairwise FST revealed that most (65%) comparisons were not significantly different, suggesting a high rate of gene flow. Analysis of molecular variance (amova) found no significant genetic differentiation among populations from different host‐plant species. Sharing of several haplotypes among flies from different host‐plants indicates that the flies were moved freely across the plant species. Demographic history analysis revealed that the population has undergone recent expansion dating back to the end of the last glaciation. Thus, the results indicate that both ongoing and historical factors have played important roles in determining the genetic structure and diversity of B. latifrons. DNA barcoding analysis revealed that B. latifrons specimens were clearly differentiated from other species with 100% correct identification. Therefore, cytochrome oxidase I (COI) barcoding sequences could be effectively used to identify this important pest species, which could encourage monitoring and control efforts for this species.
Acta Tropica | 2016
Zubaidah Ya’cob; Hiroyuki Takaoka; Pairot Pramual; Van Lun Low; Mohd Sofian-Azirun
To investigate the breeding habitat preference of black flies, a comprehensive black fly survey was conducted for the first time in Peninsular Malaysia. Preimaginal black flies (pupae and larvae) were collected manually from 180 stream points encompassing northern, southern, central and east coast of the Peninsular Malaysia. A total of 47 black fly species were recorded in this study. The predominant species were Simulium trangense (36.7%) and Simulium angulistylum (33.3%). Relatively common species were Simulium cheongi (29.4%), Simulium tani (25.6%), Simulium nobile (16.2%), Simulium sheilae (14.5%) and Simulium bishopi (10.6%). Principal Component Analysis (PCA) of all stream variables revealed four PCs that accounted for 69.3% of the total intersite variance. Regression analysis revealed that high species richness is associated with larger, deeper, faster and higher discharge streams with larger streambed particles, more riparian vegetation and low pH (F=22.7, d.f.=1, 173; P<0.001). Relationship between species occurrence of seven common species (present in >10% of the sampling sites) was assessed. Forward logistic regression analysis indicated that four species were significantly related to the stream variables. S. nobile and S. tani prefer large, fast flowing streams with higher pH, large streambed particles and riparian trees. S. bishopi was commonly found at high elevation with cooler stream, low conductivity, higher conductivity and more riparian trees. In contrast, S. sheilae was negatively correlated with PC-2, thus, this species commonly found at low elevation, warmer stream with low conductivity and less riparian trees. The results of this study are consistent with previous studies from other geographic regions, which indicated that both physical and chemical stream conditions are the key factors for black fly ecology.
Journal of Medical Entomology | 2015
Pairot Pramual; Jiraporn Thaijarern; Mohd Sofian-Azirun; Zubaidah Ya’cob; Upik Kesumawati Hadi; Hiroyuki Takaoka
ABSTRACT Simulium feuerborni Edwards is geographically widespread in Southeast Asia. Previous cytogenetic study in Thailand revealed that this species is a species complex composed of two cytoforms (A and B). In this study, we cytologically examined specimens obtained from the Cameron Highlands, Malaysia, and Puncak, Java, Indonesia. The results revealed two additional cytoforms (C and D) of S. feuerborni. Specimens from Malaysia represent cytoform C, differentiated from other cytoforms by a fixed chromosome inversion on the long arm of chromosome III (IIIL-5). High frequencies of the B chromosome (33–83%) were also observed in this cytoform. Specimens from Indonesia represent the cytoform D. This cytoform is differentiated from others by a fixed chromosome inversion difference on the long arm of chromosome II (IIL-4). Mitochondrial DNA sequences support genetic differentiation among cytoforms A, B, and C. The pairwise FST values among these cytoforms were highly significantly consistent with the divergent lineages of the cytoforms in a median-joining haplotype network. However, a lack of the sympatric populations prevented us from testing the species status of the cytoforms.
Organisms Diversity & Evolution | 2012
Pairot Pramual; Chaliow Kuvangkadilok; Sanae Jitklang; Ubon Tangkawanit; Peter H. Adler
To investigate patterns of geographical and ecological separation among morphologically similar, closely related species of black flies, we integrated ecological, geographical, and phylogenetic information, based on multiple gene sequences, for 12 species in the subgenus Gomphostilbia in Thailand. Molecular characters supported the monophyly of the Simulium ceylonicum species group, but not of the Simulium batoense species group, suggesting that revisionary work is needed for the latter. Both ecological and geographical isolation of similar taxa were revealed. Stream velocity and altitude were among the principal ecological factors differing between closely related species. Most closely related species in the subgenus Gomphostilbia overlap geographically, suggesting the possibility of sympatric speciation driven by ecological divergence. Geographical isolation via dispersal also might have contributed to species divergence, while Pleistocene climate changes possibly influenced population genetic structure, demographic history, and speciation of some members of the subgenus.