Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pak-Yin Lui is active.

Publication


Featured researches published by Pak-Yin Lui.


Cell Host & Microbe | 2011

The Double-Stranded RNA-Binding Protein PACT Functions as a Cellular Activator of RIG-I to Facilitate Innate Antiviral Response

Kin-Hang Kok; Pak-Yin Lui; Ming-Him James Ng; Kam-Leung Siu; Shannon Wing Ngor Au; Dong-Yan Jin

RIG-I, a virus sensor that triggers innate antiviral response, is a DExD/H box RNA helicase bearing structural similarity with Dicer, an RNase III-type nuclease that mediates RNA interference. Dicer requires double-stranded RNA-binding protein partners, such as PACT, for optimal activity. Here we show that PACT physically binds to the C-terminal repression domain of RIG-I and potently stimulates RIG-I-induced type I interferon production. PACT potentiates the activation of RIG-I by poly(I:C) of intermediate length. PACT also cooperates with RIG-I to sustain the activation of antiviral defense. Depletion of PACT substantially attenuates viral induction of interferons. The activation of RIG-I by PACT does not require double-stranded RNA-dependent protein kinase or Dicer, but is mediated by a direct interaction that leads to stimulation of its ATPase activity. Our findings reveal PACT as an important component in initiating and sustaining the RIG-I-dependent antiviral response.


Journal of Virology | 2014

Middle East Respiratory Syndrome Coronavirus 4a Protein Is a Double-Stranded RNA-Binding Protein That Suppresses PACT-Induced Activation of RIG-I and MDA5 in the Innate Antiviral Response

Kam-Leung Siu; Man Lung Yeung; Kin-Hang Kok; Kit-San Yuen; Chun Kew; Pak-Yin Lui; Chi-Ping Chan; Herman Tse; Patrick C. Y. Woo; Kwok-Yung Yuen; Dong-Yan Jin

ABSTRACT Middle East respiratory syndrome coronavirus (MERS-CoV) is an emerging pathogen that causes severe disease in human. MERS-CoV is closely related to bat coronaviruses HKU4 and HKU5. Evasion of the innate antiviral response might contribute significantly to MERS-CoV pathogenesis, but the mechanism is poorly understood. In this study, we characterized MERS-CoV 4a protein as a novel immunosuppressive factor that antagonizes type I interferon production. MERS-CoV 4a protein contains a double-stranded RNA-binding domain capable of interacting with poly(I·C). Expression of MERS-CoV 4a protein suppressed the interferon production induced by poly(I·C) or Sendai virus. RNA binding of MERS-CoV 4a protein was required for IFN antagonism, a property shared by 4a protein of bat coronavirus HKU5 but not by the counterpart in bat coronavirus HKU4. MERS-CoV 4a protein interacted with PACT in an RNA-dependent manner but not with RIG-I or MDA5. It inhibited PACT-induced activation of RIG-I and MDA5 but did not affect the activity of downstream effectors such as RIG-I, MDA5, MAVS, TBK1, and IRF3. Taken together, our findings suggest a new mechanism through which MERS-CoV employs a viral double-stranded RNA-binding protein to circumvent the innate antiviral response by perturbing the function of cellular double-stranded RNA-binding protein PACT. PACT targeting might be a common strategy used by different viruses, including Ebola virus and herpes simplex virus 1, to counteract innate immunity. IMPORTANCE Middle East respiratory syndrome coronavirus (MERS-CoV) is an emerging and highly lethal human pathogen. Why MERS-CoV causes severe disease in human is unclear, and one possibility is that MERS-CoV is particularly efficient in counteracting host immunity, including the sensing of virus invasion. It will therefore be critical to clarify how MERS-CoV cripples the host proteins that sense viruses and to compare MERS-CoV with its ancestral viruses in bats in the counteraction of virus sensing. This work not only provides a new understanding of the abilities of MERS-CoV and closely related bat viruses to subvert virus sensing but also might prove useful in revealing new strategies for the development of vaccines and antivirals.


Journal of Virology | 2013

Suppression of PACT-Induced Type I Interferon Production by Herpes Simplex Virus 1 Us11 Protein

Chun Kew; Pak-Yin Lui; Chi-Ping Chan; Xiang Liu; Shannon Wing Ngor Au; Ian Mohr; Dong-Yan Jin; Kin-Hang Kok

ABSTRACT Herpes simplex virus 1 (HSV-1) Us11 protein is a double-stranded RNA-binding protein that suppresses type I interferon production through the inhibition of the cytoplasmic RNA sensor RIG-I. Whether additional cellular mediators are involved in this suppression remains to be determined. In this study, we report on the requirement of cellular double-stranded RNA-binding protein PACT for Us11-mediated perturbation of type I interferon production. Us11 associates with PACT tightly to prevent it from binding with and activating RIG-I. The Us11-deficient HSV-1 was indistinguishable from the Us11-proficient virus in the suppression of interferon production when PACT was compromised. More importantly, HSV-1-induced activation of interferon production was abrogated in PACT knockout murine embryonic fibroblasts. Our findings suggest a new mechanism for viral evasion of innate immunity through which a viral double-stranded RNA-binding protein interacts with PACT to circumvent type I interferon production. This mechanism might also be used by other PACT-binding viral interferon-antagonizing proteins such as Ebola virus VP35 and influenza A virus NS1.


Emerging microbes & infections | 2016

Middle East respiratory syndrome coronavirus M protein suppresses type I interferon expression through the inhibition of TBK1-dependent phosphorylation of IRF3.

Pak-Yin Lui; Lok-Yin Roy Wong; Cheuk-Lai Fung; Kam-Leung Siu; Man Lung Yeung; Kit-San Yuen; Chi-Ping Chan; Patrick Chiu-Yat Woo; Kwok-Yung Yuen; Dong-Yan Jin

Middle East respiratory syndrome coronavirus (MERS-CoV) infection has claimed hundreds of lives and has become a global threat since its emergence in Saudi Arabia in 2012. The ability of MERS-CoV to evade the host innate antiviral response may contribute to its severe pathogenesis. Many MERS-CoV-encoded proteins were identified to have interferon (IFN)-antagonizing properties, which correlates well with the reduced IFN levels observed in infected patients and ex vivo models. In this study, we fully characterized the IFN-antagonizing property of the MERS-CoV M protein. Expression of MERS-CoV M protein suppressed type I IFN expression in response to Sendai virus infection or poly(I:C) induction. This suppressive effect was found to be specific for the activation of IFN regulatory factor 3 (IRF3) but not nuclear factor-κB. MERS-CoV M protein interacted with TRAF3 and disrupted TRAF3–TBK1 association leading to reduced IRF3 activation. M proteins from MERS-CoV and SARS-CoV have three highly similar conserved N-terminal transmembrane domains and a C-terminal region. Using chimeric and truncation mutants, the N-terminal transmembrane domains of the MERS-CoV M protein were found to be sufficient for its inhibitory effect on IFN expression, whereas the C-terminal domain was unable to induce this suppression. Collectively, our findings suggest a common and conserved mechanism through which highly pathogenic MERS-CoV and SARS-CoV harness their M proteins to suppress type I IFN expression at the level of TBK1-dependent phosphorylation and activation of IRF3 resulting in evasion of the host innate antiviral response.


Cellular and Molecular Life Sciences | 2015

MicroRNA: master controllers of intracellular signaling pathways

Pak-Yin Lui; Dong-Yan Jin; Nigel J. Stevenson

Signaling pathways are essential intracellular networks that coordinate molecular outcomes to external stimuli. Tight regulation of these pathways is essential to ensure an appropriate response. MicroRNA (miRNA) is a class of small, non-coding RNA that regulates gene expression at a post-transcriptional level by binding to the complementary sequence on target mRNA, thus limiting protein translation. Intracellular pathways are controlled by protein regulators, such as suppressor of cytokine signaling and A20. Until recently, expression of these classical protein regulators was thought to be controlled solely by transcriptional induction and proteasomal degradation; however, there is a growing body of evidence describing their regulation by miRNA. This new information has transformed our understanding of cell signaling by adding a previously unknown layer of regulatory control. This review outlines the miRNA regulation of these classical protein regulators and describes their broad effects at both cellular and disease levels. We review the regulation of three important signaling pathways, including the JAK/STAT, NF-κB, and TGF-β pathways, and summarize an extensive catalog of their regulating miRNAs. This information highlights the importance of the miRNA regulon and reveals a previously unknown regulatory landscape that must be included in the identification and development of novel therapeutic targets for clinical disorders.


Journal of Virology | 2016

PACT- and RIG-I-dependent activation of type I interferon production by a defective-interfering RNA derived from measles virus vaccine

Ting-Hin Ho; Chun Kew; Pak-Yin Lui; Chi-Ping Chan; Takashi Satoh; Shizuo Akira; Dong-Yan Jin; Kin-Hang Kok

ABSTRACT The live attenuated measles virus vaccine is highly immunostimulatory. Identification and characterization of its components that activate the innate immune response might provide new strategies and agents for the rational design and development of chemically defined adjuvants. In this study, we report on the activation of type I interferon (IFN) production by a defective interfering (DI) RNA isolated from the Hu-191 vaccine strain of measles virus. We found that the Hu-191 virus induced IFN-β much more potently than the Edmonston strain. In the search for IFN-inducing species in Hu-191, we identified a DI RNA specifically expressed by this strain. This DI RNA, which was of the copy-back type, was predicted to fold into a hairpin structure with a long double-stranded stem region of 206 bp, and it potently induced the expression of IFN-β. Its IFN-β-inducing activity was further enhanced when both cytoplasmic RNA sensor RIG-I and its partner, PACT, were overexpressed. On the contrary, this activity was abrogated in cells deficient in PACT or RIG-I. The DI RNA was found to be associated with PACT in infected cells. In addition, both the 5′-di/triphosphate end and the double-stranded stem region on the DI RNA were essential for its activation of PACT and RIG-I. Taken together, our findings support a model in which a viral DI RNA is sensed by PACT and RIG-I to initiate an innate antiviral response. Our work might also provide a foundation for identifying physiological PACT ligands and developing novel adjuvants or antivirals. IMPORTANCE The live attenuated measles virus vaccine is one of the most successful human vaccines and has largely contained the devastating impact of a highly contagious virus. Identifying the components in this vaccine that stimulate the host immune response and understanding their mechanism of action might help to design and develop better adjuvants, vaccines, antivirals, and immunotherapeutic agents. We identified and characterized a defective interfering RNA from the Hu-191 vaccine strain of measles virus which has safely been used in millions of people for many years. We further demonstrated that this RNA potently induces an antiviral immune response through cellular sensors of viral RNA known as PACT and RIG-I. Similar types of viral RNA that bind with and activate PACT and RIG-I might retain the immunostimulatory property of measles virus vaccines but would not induce adaptive immunity. They are potentially useful as chemically defined vaccine adjuvants, antivirals, and immunostimulatory agents.


Journal of Immunology | 2017

PACT Facilitates RNA-Induced Activation of MDA5 by Promoting MDA5 Oligomerization

Pak-Yin Lui; Lok-Yin Roy Wong; Ting-Hin Ho; Shannon Wing Ngor Au; Chi-Ping Chan; Kin-Hang Kok; Dong-Yan Jin

MDA5 is a RIG-I–like cytoplasmic sensor of dsRNA and certain RNA viruses, such as encephalomyocarditis virus, for the initiation of the IFN signaling cascade in the innate antiviral response. The affinity of MDA5 toward dsRNA is low, and its activity becomes optimal in the presence of unknown cellular coactivators. In this article, we report an essential coactivator function of dsRNA-binding protein PACT in mediating the MDA5-dependent type I IFN response. Virus-induced and polyinosinic-polycytidylic acid–induced activation of MDA5 were severely impaired in PACT-knockout cells and attenuated in PACT-knockdown cells, but they were potentiated when PACT was overexpressed. PACT augmented IRF3-dependent type I IFN production subsequent to dsRNA-induced activation of MDA5. In contrast, PACT had no influence on MDA5-mediated activation of NF-κB. PACT required dsRNA interaction for its action on MDA5 and promoted dsRNA-induced oligomerization of MDA5. PACT had little stimulatory effect on MDA5 mutants deficient for oligomerization and filament assembly. PACT colocalized with MDA5 in the cytoplasm and potentiated MDA5 recruitment to the dsRNA ligand. Taken together, these findings suggest that PACT functions as an essential cellular coactivator of RIG-I, as well as MDA5, and it facilitates RNA-induced formation of MDA5 oligomers.


Virologica Sinica | 2016

A molecular arms race between host innate antiviral response and emerging human coronaviruses.

Lok-Yin Roy Wong; Pak-Yin Lui; Dong-Yan Jin

Coronaviruses have been closely related with mankind for thousands of years. Communityacquired human coronaviruses have long been recognized to cause common cold. However, zoonotic coronaviruses are now becoming more a global concern with the discovery of highly pathogenic severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) coronaviruses causing severe respiratory diseases. Infections by these emerging human coronaviruses are characterized by less robust interferon production. Treatment of patients with recombinant interferon regimen promises beneficial outcomes, suggesting that compromised interferon expression might contribute at least partially to the severity of disease. The mechanisms by which coronaviruses evade host innate antiviral response are under intense investigations. This review focuses on the fierce arms race between host innate antiviral immunity and emerging human coronaviruses. Particularly, the host pathogen recognition receptors and the signal transduction pathways to mount an effective antiviral response against SARS and MERS coronavirus infection are discussed. On the other hand, the counter-measures evolved by SARS and MERS coronaviruses to circumvent host defense are also dissected. With a better understanding of the dynamic interaction between host and coronaviruses, it is hoped that insights on the pathogenesis of newly-identified highly pathogenic human coronaviruses and new strategies in antiviral development can be derived.


Retrovirology | 2014

Suppression of type I interferon production by human T-cell leukemia virus type 1 oncoprotein Tax

Dong-Yan Jin; Kin-Hang Kok; Hei-Man V Tang; Pak-Yin Lui; Chi-Ping Chan

Human T-cell leukemia virus type 1 (HTLV-1) is the etiologic agent of adult T-cell leukemia (ATL) and tropical spastic paraparesis. Type I interferons are key effectors of innate antiviral response and have been tested as anti-HTLV-1 and anti-ATL agents. HTLV-1 oncoprotein Tax is known to suppress innate interferon response by activating SOCS1, an inhibitor of interferon signaling that activates the expression of interferon-stimulated genes. Whether Tax might also suppress interferon production remains to be determined. Here we report on the suppression of type I interferon production by HTLV-1 Tax through interaction with and inhibition of TBK1 kinase. HTLV-1-transformed ATL cells were found to be unable to boost the production of type I interferons in response to Sendai virus infection. This inability was attributed to Tax. Expression of Tax alone sufficiently repressed the induction of interferon production by RIG-I + PACT, TBK1 and IRF3, but not by IRF3-5D, a dominant active phosphomimetic mutant. This suggests that Tax might act at a point prior to IRF3 phosphorylation. Reciprocal co-immunoprecipitation and immunoblotting experiments confirmed the association of Tax with TBK1 kinase that phosphorylates IRF3. In vitro kinase assay indicated an inhibitory effect of Tax on TBK1-mediated phosphorylation of IRF3. Taken together, our findings suggested a new mechanism by HTLV-1 oncoprotein Tax circumvents the production of type I interferons in infected cells. (Supported by HKU7661/08M, HKU7674/12M, HKU1/CRF/11G and SKY-MRF-2011).


The FASEB Journal | 2018

Antiviral activity of double-stranded RNA–binding protein PACT against influenza A virus mediated via suppression of viral RNA polymerase

Chi-Ping Chan; Chun-Kit Yuen; Pak-Hin Hinson Cheung; Sin-Yee Fung; Pak-Yin Lui; Honglin Chen; Kin-Hang Kok; Dong-Yan Jin

PACT is a double‐stranded RNA‐binding protein that has been implicated in host‐influenza A virus (IAV) interaction. PACT facilitates the action of RIG‐I in the activation of the type I IFN response, which is suppressed by the viral nonstructural protein NS1. PACT is also known to interact with the IAV RNA polymerase subunit PA. Exactly how PACT exerts its antiviral activity during IAV infection remains to be elucidated. In the current study, we demonstrated the interplay between PACT and IAV polymerase. Induction of IFN‐β by the IAV RNP complex was most robust when both RIG‐I and PACT were expressed. PACT‐dependent activation of IFN‐β production was suppressed by the IAV polymerase subunits, polymerase acidic protein, polymerase basic protein 1 (PB1), and PB2. PACT associated with PA, PB1, and PB2. Compromising PACT in IAV‐infected A549 cells resulted in the augmentation of viral RNA (vRNA) transcription and replication and IFN‐β production. Furthermore, vRNA replication was boosted by knockdown of PACT in both A549 cells and IFN‐deficient Vero cells. Thus, the antiviral activity of PACT is mediated primarily via its interaction with and inhibition of IAV polymerase. Taken together, our findings reveal a new facet of the host‐IAV interaction in which the interplay between PACT and IAV poly‐merase affects the outcome of viral infection and antiviral response.—Chan, C.‐P., Yuen, C.‐K., Cheung, P.‐H. H., Fung, S.‐Y., Lui, P.‐Y., Chen, H., Kok, K.‐H., Jin, D.‐Y. Antiviral activity of double‐stranded RNA‐binding protein PACT against influenza A virus mediated via suppression of viral RNA polymerase. FASEB J. 32, 4380–4393 (2018). www.fasebj.org

Collaboration


Dive into the Pak-Yin Lui's collaboration.

Top Co-Authors

Avatar

Dong-Yan Jin

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kin-Hang Kok

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Chun Kew

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shannon Wing Ngor Au

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Kit-San Yuen

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sin-Yee Fung

University of Hong Kong

View shared research outputs
Researchain Logo
Decentralizing Knowledge