Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pål Puntervoll is active.

Publication


Featured researches published by Pål Puntervoll.


Nucleic Acids Research | 2003

ELM server: a new resource for investigating short functional sites in modular eukaryotic proteins

Pål Puntervoll; Rune Linding; Christine Gemünd; Sophie Chabanis-Davidson; Morten Mattingsdal; Scott Cameron; David M. A. Martin; Gabriele Ausiello; Barbara Brannetti; Anna Costantini; Fabrizio Ferrè; Vincenza Maselli; Allegra Via; Gianni Cesareni; Francesca Diella; Giulio Superti-Furga; Lucjan S. Wyrwicz; Chenna Ramu; Caroline McGuigan; Rambabu Gudavalli; Ivica Letunic; Peer Bork; Leszek Rychlewski; Bernhard Kuster; Manuela Helmer-Citterich; William N. Hunter; Rein Aasland; Toby J. Gibson

Multidomain proteins predominate in eukaryotic proteomes. Individual functions assigned to different sequence segments combine to create a complex function for the whole protein. While on-line resources are available for revealing globular domains in sequences, there has hitherto been no comprehensive collection of small functional sites/motifs comparable to the globular domain resources, yet these are as important for the function of multidomain proteins. Short linear peptide motifs are used for cell compartment targeting, protein-protein interaction, regulation by phosphorylation, acetylation, glycosylation and a host of other post-translational modifications. ELM, the Eukaryotic Linear Motif server at http://elm.eu.org/, is a new bioinformatics resource for investigating candidate short non-globular functional motifs in eukaryotic proteins, aiming to fill the void in bioinformatics tools. Sequence comparisons with short motifs are difficult to evaluate because the usual significance assessments are inappropriate. Therefore the server is implemented with several logical filters to eliminate false positives. Current filters are for cell compartment, globular domain clash and taxonomic range. In favourable cases, the filters can reduce the number of retained matches by an order of magnitude or more.


Nucleic Acids Research | 2010

ELM: the status of the 2010 eukaryotic linear motif resource.

Cathryn M. Gould; Francesca Diella; Allegra Via; Pål Puntervoll; Christine Gemünd; Sophie Chabanis-Davidson; Sushama Michael; Ahmed Sayadi; Jan Christian Bryne; Claudia Chica; Markus Seiler; Norman E. Davey; Niall J. Haslam; Robert J. Weatheritt; Aidan Budd; Timothy P. Hughes; Jakub Paś; Leszek Rychlewski; Gilles Travé; Rein Aasland; Manuela Helmer-Citterich; Rune Linding; Toby J. Gibson

Linear motifs are short segments of multidomain proteins that provide regulatory functions independently of protein tertiary structure. Much of intracellular signalling passes through protein modifications at linear motifs. Many thousands of linear motif instances, most notably phosphorylation sites, have now been reported. Although clearly very abundant, linear motifs are difficult to predict de novo in protein sequences due to the difficulty of obtaining robust statistical assessments. The ELM resource at http://elm.eu.org/ provides an expanding knowledge base, currently covering 146 known motifs, with annotation that includes >1300 experimentally reported instances. ELM is also an exploratory tool for suggesting new candidates of known linear motifs in proteins of interest. Information about protein domains, protein structure and native disorder, cellular and taxonomic contexts is used to reduce or deprecate false positive matches. Results are graphically displayed in a ‘Bar Code’ format, which also displays known instances from homologous proteins through a novel ‘Instance Mapper’ protocol based on PHI-BLAST. ELM server output provides links to the ELM annotation as well as to a number of remote resources. Using the links, researchers can explore the motifs, proteins, complex structures and associated literature to evaluate whether candidate motifs might be worth experimental investigation.


Infection and Immunity | 2010

Heat-Stable Enterotoxin of Enterotoxigenic Escherichia coli as a Vaccine Target

Arne Taxt; Rein Aasland; Halvor Sommerfelt; James P. Nataro; Pål Puntervoll

ABSTRACT Enterotoxigenic Escherichia coli (ETEC) is responsible for 280 million to 400 million episodes of diarrhea and about 380,000 deaths annually. Epidemiological data suggest that ETEC strains which secrete heat-stable toxin (ST), alone or in combination with heat-labile toxin (LT), induce the most severe disease among children in developing countries. This makes ST an attractive target for inclusion in an ETEC vaccine. ST is released upon colonization of the small intestine and activates the guanylate cyclase C receptor, causing profuse diarrhea. To generate a successful toxoid, ST must be made immunogenic and nontoxic. Due to its small size, ST is nonimmunogenic in its natural form but becomes immunogenic when coupled to an appropriate large-molecular-weight carrier. This has been successfully achieved with several carriers, using either chemical conjugation or recombinant fusion techniques. Coupling of ST to a carrier may reduce toxicity, but further reduction by mutagenesis is desired to obtain a safe vaccine. More than 30 ST mutants with effects on toxicity have been reported. Some of these mutants, however, have lost the ability to elicit neutralizing immune responses to the native toxin. Due to the small size of ST, separating toxicity from antigenicity is a particular challenge that must be met. Another obstacle to vaccine development is possible cross-reactivity between anti-ST antibodies and the endogenous ligands guanylin and uroguanylin, caused by structural similarity to ST. Here we review the molecular and biological properties of ST and discuss strategies for developing an ETEC vaccine that incorporates immunogenic and nontoxic derivatives of the ST toxin.


Aquatic Toxicology | 2010

Responses in the brain proteome of Atlantic cod (Gadus morhua) exposed to methylmercury

Karin Berg; Pål Puntervoll; Stig Valdersnes; Anders Goksøyr

The molecular mechanisms underlying the neurotoxicity of methylmercury (MeHg), a ubiquitous environmental contaminant, are not yet fully understood. Furthermore, there is a lack of biomarkers of MeHg neurotoxicity for use in environmental monitoring. We have undertaken a proteomic analysis of brains from Atlantic cod (Gadus morhua) exposed to 0, 0.5 and 2 mg/kg MeHg administered by intraperitoneal injection. The doses were given in two injections, half of the dose on the first day and the second half after 1 week, and the total exposure period lasted 2 weeks. Using 2-DE coupled with MALDI-TOF MS and MS/MS, we observed the level of 71 protein spots to be 20% or more significantly altered following MeHg exposure, and successfully identified 40 of these protein spots. Many of these proteins are associated with main known molecular targets and mechanisms of MeHg-induced neurotoxicity in mammals, such as mitochondrial dysfunction, oxidative stress, altered calcium homeostasis and tubulin/disruption of microtubules. More interestingly, several of the affected proteins, with well-established or recently demonstrated critical functions in nervous system-specific processes, have not previously been associated with MeHg exposure in any species. These proteins include the strongest up-regulated protein, pyridoxal kinase (essential for synthesis of several neurotransmitters), G protein (coupled to neurotransmitter receptors), nicotinamide phosphoribosyl-transferase (protection against axonal degeneration), dihydropyrimidinase-like 5 (or collapsin response mediator protein 5, CRMP-5) (axon guidance and regeneration), septin (dendrite development), phosphatidylethanolamine binding protein (precursor for hippocampal cholinergic neurostimulating peptide) and protein phosphatase 1 (control of brain recovery by synaptic plasticity). The results of the present study aid our understanding of molecular mechanisms underlying MeHg neurotoxicity and defense responses, and provide a large panel of protein biomarker candidates for aquatic environmental monitoring.


Microbiology | 2002

Structural characterization of the fusobacterial non-specific porin FomA suggests a 14-stranded topology, unlike the classical porins.

Pål Puntervoll; Morten Ruud; Live J. Bruseth; Hans Kleivdal; Bente T. Høgh; Roland Benz; Harald B. Jensen

Native and recombinant FomA proteins were extracted by detergent from the cell envelopes of Fusobacterium nucleatum and Escherichia coli, and purified to near homogeneity by chromatography. Circular dichroism analysis revealed that the FomA protein consists predominantly of beta-sheets, in line with the previously proposed 16-stranded beta-barrel topology model. Results obtained by trypsin treatment of intact cells and cell envelopes of F. nucleatum, and from limited proteolysis of purified FomA protein, indicated that the N-terminal part of the FomA protein is not an integral part of the beta-barrel, but forms a periplasmic domain. Based on these results a new topology model is proposed for the FomA protein, where the C-terminal part forms a 14-stranded beta-barrel separate from the periplasmic N-terminal domain.


FEBS Journal | 2012

NAD+ biosynthesis and salvage – a phylogenetic perspective

Toni I. Gossmann; Mathias Ziegler; Pål Puntervoll; Luis F. de Figueiredo; Stefan Schuster; Ines Heiland

NAD is best known as an electron carrier and a cosubstrate of various redox reactions. However, over the past 20 years, NAD+ has been shown to be a key signaling molecule that mediates post‐translational protein modifications and serves as precursor of ADP‐ribose‐containing messenger molecules, which are involved in calcium mobilization. In contrast to its role as a redox carrier, NAD+‐dependent signaling processes involve the release of nicotinamide (Nam) and require constant replenishment of cellular NAD+ pools. So far, very little is known about the evolution of NAD(P) synthesis in eukaryotes. In the present study, genes involved in NAD(P) metabolism in 45 species were identified and analyzed with regard to similarities and differences in NAD(P) synthesis. The results show that the Preiss–Handler pathway and NAD+ kinase are present in all organisms investigated, and thus seem to be ancestral routes. Additionally, two pathways exist that convert Nam to NAD+; we identified several species that have apparently functional copies of both biosynthetic routes, which have been thought to be mutually exclusive. Furthermore, our findings suggest the parallel phylogenetic appearance of Nam N‐methyltransferase, Nam phosphoribosyl transferase, and poly‐ADP‐ribosyltransferases.


Molecular Cancer | 2010

Identification and characterization of retinoblastoma gene mutations disturbing apoptosis in human breast cancers

Elisabet Ognedal Berge; Stian Knappskog; Stephanie Geisler; Vidar Staalesen; Marec Pacal; Anne Lise Børresen-Dale; Pål Puntervoll; Johan R. Lillehaug; Per Eystein Lønning

BackgroundThe tumor suppressor pRb plays a key role regulating cell cycle arrest, and disturbances in the RB1 gene have been reported in different cancer forms. However, the literature reports contradictory findings with respect to a pro - versus anti - apoptotic role of pRb, and the consequence of alterations in RB1 to chemotherapy sensitivity remains unclear. This study is part of a project investigating alterations in pivotal genes as predictive factors to chemotherapy sensitivity in breast cancer.ResultsAnalyzing 73 locally advanced (stage III) breast cancers, we identified two somatic and one germline single nucleotide changes, each leading to amino acid substitution in the pRb protein (Leu607Ile, Arg698Trp, and Arg621Cys, respectively). This is the first study reporting point mutations affecting RB1 in breast cancer tissue. In addition, MLPA analysis revealed two large multiexon deletions (exons 13 to 27 and exons 21 to 23) with the exons 21-23 deletion occurring in the tumor also harboring the Leu607Ile mutation. Interestingly, Leu607Ile and Arg621Cys point mutations both localize to the spacer region of the pRb protein, a region previously shown to harbor somatic and germline mutations. Multiple sequence alignment across species indicates the spacer to be evolutionary conserved. All three RB1 point mutations encoded nuclear proteins with impaired ability to induce apoptosis compared to wild-type pRb in vitro. Notably, three out of four tumors harboring RB1 mutations displayed primary resistance to treatment with either 5-FU/mitomycin or doxorubicin while only 14 out of 64 tumors without mutations were resistant (p = 0.046).ConclusionsAlthough rare, our findings suggest RB1 mutations to be of pathological importance potentially affecting sensitivity to mitomycin/anthracycline treatment in breast cancer.


Journal of Biological Chemistry | 2013

Model of Tryptophan Metabolism, Readily Scalable Using Tissue-specific Gene Expression Data

Anne-Kristin Stavrum; Ines Heiland; Stefan Schuster; Pål Puntervoll; Mathias Ziegler

Background: Changes in tryptophan metabolism are associated with various diseases. Results: A comprehensive model of human tryptophan metabolism was constructed and verified with existing experimental data. Conclusion: The subtle balance of tryptophan derivatives required for proper brain function is sensitive to alterations in peripheral tissues. Significance: The model is applicable as a diagnostic tool to study disease related changes in tryptophan metabolism. Tryptophan is utilized in various metabolic routes including protein synthesis, serotonin, and melatonin synthesis and the kynurenine pathway. Perturbations in these pathways have been associated with neurodegenerative diseases and cancer. Here we present a comprehensive kinetic model of the complex network of human tryptophan metabolism based upon existing kinetic data for all enzymatic conversions and transporters. By integrating tissue-specific expression data, modeling tryptophan metabolism in liver and brain returned intermediate metabolite concentrations in the physiological range. Sensitivity and metabolic control analyses identified expected key enzymes to govern fluxes in the branches of the network. Combining tissue-specific models revealed a considerable impact of the kynurenine pathway in liver on the concentrations of neuroactive derivatives in the brain. Moreover, using expression data from a cancer study predicted metabolite changes that resembled the experimental observations. We conclude that the combination of the kinetic model with expression data represents a powerful diagnostic tool to predict alterations in tryptophan metabolism. The model is readily scalable to include more tissues, thereby enabling assessment of organismal tryptophan metabolism in health and disease.


FEBS Letters | 2013

Effect of substrate competition in kinetic models of metabolic networks.

Sascha Schäuble; Anne-Kristin Stavrum; Pål Puntervoll; Stefan Schuster; Ines Heiland

Substrate competition can be found in many types of biological processes, ranging from gene expression to signal transduction and metabolic pathways. Although several experimental and in silico studies have shown the impact of substrate competition on these processes, it is still often neglected, especially in modelling approaches. Using toy models that exemplify different metabolic pathway scenarios, we show that substrate competition can influence the dynamics and the steady state concentrations of a metabolic pathway. We have additionally derived rate laws for substrate competition in reversible reactions and summarise existing rate laws for substrate competition in irreversible reactions.


FEBS Journal | 2005

Identification of a copper-repressible C-type heme protein of Methylococcus capsulatus (Bath). A member of a novel group of the bacterial di-heme cytochrome c peroxidase family of proteins.

Odd André Karlsen; Louise Kindingstad; Solveig M. Angelskår; Live J. Bruseth; Daniel Straume; Pål Puntervoll; Anne Fjellbirkeland; Johan R. Lillehaug; Harald B. Jensen

Genomic sequencing of the methanotrophic bacterium, Methylococcus capsulatus (Bath), revealed an open reading frame (MCA2590) immediately upstream of the previously described mopE gene (MCA2589). Sequence analyses of the deduced amino acid sequence demonstrated that the MCA2590‐encoded protein shared significant, but restricted, sequence similarity to the bacterial di‐heme cytochrome c peroxidase (BCCP) family of proteins. Two putative C‐type heme‐binding motifs were predicted, and confirmed by positive heme staining. Immunospecific recognition and biotinylation of whole cells combined with MS analyses confirmed expression of MCA2590 in M. capsulatus as a protein noncovalently associated with the cellular surface of the bacterium exposed to the cell exterior. Similar to MopE, expression of MCA2590 is regulated by the bioavailability of copper and is most abundant in M. capsulatus cultures grown under low copper conditions, thus indicating an important physiological role under these growth conditions. MCA2590 is distinguished from previously characterized members of the BCCP family by containing a much longer primary sequence that generates an increased distance between the two heme‐binding motifs in its primary sequence. Furthermore, the surface localization of MCA2590 is in contrast to the periplasmic location of the reported BCCP members. Based on our experimental and bioinformatical analyses, we suggest that MCA2590 is a member of a novel group of bacterial di‐heme cytochrome c peroxidases not previously characterized.

Collaboration


Dive into the Pål Puntervoll's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge