Pal Weihe
University of the Faroe Islands
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pal Weihe.
Neurotoxicology and Teratology | 2001
Philippe Grandjean; Pal Weihe; Virlyn W. Burse; Larry L. Needham; Eva Storr-Hansen; Birger Heinzow; Frodi Debes; Katsuyuki Murata; Henrik Simonsen; Peter Ellefsen; Esben Budtz-Jørgensen; Niels Keiding; Roberta F. White
Prenatal exposure to polychlorinated biphenyls (PCBs) was examined by analysis of cord tissue from 435 children from a Faroese birth cohort. Analysis of 50 paired cord blood samples showed excellent correlation with the cord tissue concentration (r=.90). Among 17 neuropsychological outcomes determined at age 7 years, the cord PCB concentration was associated with deficits on the Boston Naming Test (without cues, two-tailed P=.09 not adjusted for mercury; with cues, P=.03), the Continuous Performance Test reaction time (P=.03), and, possibly, on long-term recall on the California Verbal Learning Test (P=.15). The association between cord PCB and cord-blood mercury (r=.42) suggested possible confounding. While no PCB effects were apparent in children with low mercury exposure, PCB-associated deficits within the highest tertile of mercury exposure indicated a possible interaction between the two neurotoxicants. PCB-associated increased thresholds were seen at two of eight frequencies on audiometry, but only on the left side, and no deficits occurred on evoked potentials or contrast sensitivity. The limited PCB-related neurotoxicity in this cohort appears to be affected by concomitant methylmercury exposure.
JAMA | 2012
Philippe Grandjean; Elisabeth Wreford Andersen; Esben Budtz-Jørgensen; Flemming Nielsen; Kåre Mølbak; Pal Weihe; Carsten Heilmann
CONTEXT Perfluorinated compounds (PFCs) have emerged as important food contaminants. They cause immune suppression in a rodent model at serum concentrations similar to those occurring in the US population, but adverse health effects of PFC exposure are poorly understood. OBJECTIVE To determine whether PFC exposure is associated with antibody response to childhood vaccinations. DESIGN, SETTING, AND PARTICIPANTS Prospective study of a birth cohort from the National Hospital in the Faroe Islands. A total of 656 consecutive singleton births were recruited during 1997-2000, [corrected] and 587 participated in follow-up through 2008. MAIN OUTCOME MEASURES Serum antibody concentrations against tetanus and diphtheria toxoids at ages 5 and 7 years. RESULTS Similar to results of prior studies in the United States, the PFCs with the highest serum concentrations were perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA). Among PFCs in maternal pregnancy serum, PFOS showed the strongest negative correlations with antibody concentrations at age 5 years, for which a 2-fold greater concentration of exposure was associated with a difference of -39% (95% CI, -55% to -17%) in the diphtheria antibody concentration. PFCs in the childs serum at age 5 years showed uniformly negative associations with antibody levels, especially at age 7 years, except that the tetanus antibody level following PFOS exposure was not statistically significant. In a structural equation model, a 2-fold greater concentration of major PFCs in child serum was associated with a difference of -49% (95% CI, -67% to -23%) in the overall antibody concentration. A 2-fold increase in PFOS and PFOA concentrations at age 5 years was associated with odds ratios between 2.38 (95% CI, 0.89 to 6.35) and 4.20 (95% CI, 1.54 to 11.44) for falling below a clinically protective level of 0.1 IU/mL for tetanus and diphtheria antibodies at age 7 years. CONCLUSION Elevated exposures to PFCs were associated with reduced humoral immune response to routine childhood immunizations in children aged 5 and 7 years.
Epidemiology | 1999
Nicolina Sørensen; Katsuyuki Murata; Esben Budtz-Jørgensen; Pal Weihe; Philippe Grandjean
Blood pressure in childhood is an important determinant of hypertension risk later in life, and methylmercury exposure is a potential environmental risk factor. A birth cohort of 1,000 children from the Faroe Islands was examined for prenatal exposure to methylmercury, and at age 7 years, blood pressure, heart rate, and heart rate variability were determined. After adjustment for body weight, diastolic and systolic blood pressure increased by 13.9 mmHg [95% confidence limits (CL) = 7.4, 20.4] and 14.6 mmHg (95% CL = 8.3, 20.8), respectively, when cord blood mercury concentrations increased from 1 to 10 microg/liter cord blood. Above this level, which corresponds to a current exposure limit, no further increase was seen. Birth weight acted as a modifier, with the mercury effect being stronger in children with lower birth weights. In boys, heart rate variability decreased with increasing mercury exposures, particularly from 1 to 10 microg/liter cord blood, at which the variability was reduced by 47% (95% CL = 14%, 68%). These findings suggest that prenatal exposure to methylmercury may affect the development of cardiovascular homeostasis.
Environmental Science & Technology | 2011
Larry L. Needham; Philippe Grandjean; Birger Heinzow; Poul J. Jørgensen; Flemming Nielsen; Donald G. Patterson; Andreas Sjödin; Wayman E. Turner; Pal Weihe
Passage of environmental chemicals across the placenta has important toxicological consequences, as well as for choosing samples for analysis and for interpreting the results. To obtain systematic data, we collected in 2000 maternal and cord blood, cord tissue, placenta, and milk in connection with births in the Faroe Islands, where exposures to marine contaminants is increased. In 15 sample sets, we measured a total of 87 environmental chemicals, almost all of which were detected both in maternal and fetal tissues. The maternal serum lipid-based concentrations of organohalogen compounds averaged 1.7 times those of cord serum, 2.8 times those of cord tissue and placenta, and 0.7 those of milk. For organohalogen compounds detectable in all matrices, a high degree of correlation between concentrations in maternal serum and the other tissues investigated was generally observed (r2 > 0.5). Greater degree of chlorination resulted in lower transfer from maternal serum into milk. Concentrations of pentachlorbenzene, γ-hexachlorocyclohexane, and several polychlorinated biphenyl congeners with low chlorination were higher in fetal samples and showed poor correlation with maternal levels. Perfluorinated compounds occurred in lower concentrations in cord serum than in maternal serum. Cadmium, lead, mercury, and selenium were all detected in fetal samples, but only mercury showed close correlations among concentrations in different matrices. Although the environmental chemicals examined pass through the placenta and are excreted into milk, partitions between maternal and fetal samples are not uniform.
Environmental Health Perspectives | 2011
Eva Govarts; Mark J. Nieuwenhuijsen; Greet Schoeters; Ferran Ballester; Karolien Bloemen; Michiel R. de Boer; Cécile Chevrier; Merete Eggesbø; Mònica Guxens; Ursula Krämer; Juliette Legler; David Martinez; Lubica Palkovicova; Evridiki Patelarou; Ulrich Ranft; Arja Rautio; Maria Skaalum Petersen; Rémy Slama; Hein Stigum; Gunnar Toft; Tomas Trnovec; Stéphanie Vandentorren; Pal Weihe; Nynke Weisglas Kuperus; Michael Wilhelm; Jürgen Wittsiepe; Jens Peter Bonde
Objectives: Exposure to high concentrations of persistent organochlorines may cause fetal toxicity, but the evidence at low exposure levels is limited. Large studies with substantial exposure contrasts and appropriate exposure assessment are warranted. Within the framework of the EU (European Union) ENRIECO (ENvironmental Health RIsks in European Birth Cohorts) and EU OBELIX (OBesogenic Endocrine disrupting chemicals: LInking prenatal eXposure to the development of obesity later in life) projects, we examined the hypothesis that the combination of polychlorinated biphenyls (PCBs) and dichlorodiphenyldichloroethylene (DDE) adversely affects birth weight. Methods: We used maternal and cord blood and breast milk samples of 7,990 women enrolled in 15 study populations from 12 European birth cohorts from 1990 through 2008. Using identical variable definitions, we performed for each cohort linear regression of birth weight on estimates of cord serum concentration of PCB-153 and p,p´-DDE adjusted for gestational age and a priori selected covariates. We obtained summary estimates by meta-analysis and performed analyses of interactions. Results: The median concentration of cord serum PCB-153 was 140 ng/L (range of cohort medians 20–484 ng/L) and that of p,p´-DDE was 528 ng/L (range of cohort medians 50–1,208 ng/L). Birth weight decreased with increasing cord serum concentration of PCB-153 after adjustment for potential confounders in 12 of 15 study populations. The meta-analysis including all cohorts indicated a birth weight decline of 150 g [95% confidence interval (CI): –250, –50 g] per 1-µg/L increase in PCB-153, an exposure contrast that is close to the range of exposures across the cohorts. A 1-µg/L increase in p,p´-DDE was associated with a 7-g decrease in birth weight (95% CI: –18, 4 g). Conclusions: The findings suggest that low-level exposure to PCB (or correlated exposures) impairs fetal growth, but that exposure to p,p´-DDE does not. The study adds to mounting evidence that low-level exposure to PCBs is inversely associated with fetal growth.
Environmental Health Perspectives | 2006
Esben Budtz-Jørgensen; Philippe Grandjean; Pal Weihe
Background Fish and seafood provide important nutrients but may also contain toxic contaminants, such as methylmercury. Advisories against pollutants may therefore conflict with dietary recommendations. In resolving this conundrum, most epidemiologic studies provide little guidance because they address either nutrient benefits or mercury toxicity, not both. Objectives Impact on the same health outcomes by two exposures originating from the same food source provides a classical example of confounding. To explore the extent of this bias, we applied structural equation modeling to data from a prospective study of developmental methylmercury neurotoxicity in the Faroe Islands. Results Adjustment for the benefits conferred by maternal fish intake during pregnancy resulted in an increased effect of the prenatal methylmercury exposure, as compared with the unadjusted results. The dietary questionnaire response is likely to be an imprecise proxy for the transfer of seafood nutrients to the fetus, and this imprecision may bias the confounder-adjusted mercury effect estimate. We explored the magnitude of this bias in sensitivity analysis assuming a range of error variances. At realistic imprecision levels, mercury-associated deficits increased by up to 2-fold when compared with the unadjusted effects. Conclusions These results suggest that uncontrolled confounding from a beneficial parameter, and imprecision of this confounder, may cause substantial underestimation of the effects of a toxic exposure. The adverse effects of methylmercury exposure from fish and seafood are therefore likely to be underestimated by unadjusted results from observational studies, and the extent of this bias will be study dependent.
Basic & Clinical Pharmacology & Toxicology | 2007
Philippe Grandjean; David C. Bellinger; Åke Bergman; Sylvaine Cordier; George Davey-Smith; Brenda Eskenazi; David Gee; Kimberly A. Gray; Mark A. Hanson; Peter Van Den Hazel; Jerrold J. Heindel; Birger Heinzow; Irva Hertz-Picciotto; Howard Hu; Terry T K Huang; Tina Kold Jensen; Philip J. Landrigan; I. Caroline McMillen; Katsuyuki Murata; Beate Ritz; Greet Schoeters; Niels Erik Skakkebæk; Staffan Skerfving; Pal Weihe
The periods of embryonic, foetal and infant developmentare remarkably susceptible to environmental hazards. Toxicexposures to chemical pollutants during these windows ofincreased susceptibility can cause disease and disability ininfants, children and across the entire span of human life.Among the effects of toxic exposures recognized in the pasthave been spontaneous abortion, congenital malformations,lowered birthweight and other adverse effects. These outcomesmay be readily apparent. However, even subtle changes causedby chemical exposures during early development may leadto important functional deficits and increased risks ofdisease later in life. The timing of exposure during early lifehas therefore become a crucial factor to be considered intoxicological assessments.During 20–24 May 2007, researchers in the fields of environmentalhealth, environmental chemistry, developmentalbiology, toxicology, epidemiology, nutrition and paediatricsgathered at the International Conference on Fetal Programmingand Developmental Toxicity, in Torshavn, FaroeIslands. The conference goal was to highlight new insightsinto the effects of prenatal and early postnatal exposure tochemical agents, and their sustained effects on the individualthroughout the lifespan. The conference brought togetherresearchers to focus on human data and the translationof laboratory results to elucidate the environmental risks tohuman health.
Environmental Health Perspectives | 2009
Anna Lai Choi; Pal Weihe; Esben Budtz-Jørgensen; Poul J. Jørgensen; Jukka T. Salonen; Tomi-Pekka Tuomainen; Katsuyuki Murata; Hans Petur Nielsen; Maria Skaalum Petersen; Jórun Askham; Philippe Grandjean
Background Methylmercury (MeHg), a worldwide contaminant found in fish and seafood, has been linked to an increased risk of cardiovascular mortality. Objective We examined 42 Faroese whaling men (30–70 years of age) to assess possible adverse effects within a wide range of MeHg exposures from consumption of pilot whale meat. Methods We assessed exposure levels from mercury analysis of toenails and whole blood (obtained at the time of clinical examination), and a hair sample collected 7 years previously. Outcome measures included heart rate variability (HRV), blood pressure (BP), common carotid intima-media thickness (IMT), and brainstem auditory evoked potentials (BAEP). We carried out multiple regression and structural equation model (SEM) analyses to determine the confounder-adjusted effect of mercury exposure. Taking into account correlations among related measures, we categorized exposure and outcomes in groups to derive latent exposure and response variables in SEMs. We used multiple regression analysis to compare the predictive validity of individual exposure biomarkers and the latent exposure variable on individual and latent outcomes. Results The toenail mercury concentrations varied widely and had a geometric mean of 2.0 μg/g; hair concentrations averaged about 3-fold higher. Mercury exposure was significantly associated with increased BP and IMT. This effect was reflected by SEMs, but mercury in toenails tended to be the best effect predictor. Conclusions The results support the notion that increased MeHg exposure promotes the development of cardiovascular disease.
PLOS Medicine | 2006
Carsten Heilmann; Philippe Grandjean; Pal Weihe; Flemming Nielsen; Esben Budtz-Jørgensen
Background Developmental exposure to polychlorinated biphenyls (PCBs) has been implicated as a possible cause of deficient immune function in children. This study was designed to assess whether prenatal and postnatal exposure to PCBs impacts on antibody response to childhood immunizations. Methods and Findings Two birth cohorts were formed in the Faroe Islands, where exposures vary widely, because traditional diets may include whale blubber contaminated with PCBs. Prenatal exposure was determined from maternal concentrations of PCBs in pregnancy serum and milk. Following routine childhood vaccinations against tetanus and diphtheria, 119 children were examined at 18 mo and 129 children at 7 y of age, and their serum samples were analyzed for tetanus and diphtheria toxoid antibodies and for PCBs. The antibody response to diphtheria toxoid decreased at age 18 mo by 24.4% (95% confidence interval [CI], 1.63–41.9; p = 0.04) for each doubling of the cumulative PCB exposure at the time of examination. The diphtheria response was lower at age 7 y and was not associated with the exposure. However, the tetanus toxoid antibody response was affected mainly at age 7 y, decreasing by 16.5% (95% CI, 1.51–29.3; p = 0.03) for each doubling of the prenatal exposure. Structural equation analysis showed that the early postnatal exposure was the most important predictor of a decreased vaccination response. Conclusions Increased perinatal exposure to PCBs may adversely impact on immune responses to childhood vaccinations. The clinical implications of insufficient antibody production emphasize the need for prevention of immunotoxicant exposures.
Nutrition Reviews | 2011
Kathryn R. Mahaffey; Elsie M. Sunderland; Hing Man Chan; Anna L. Choi; Philippe Grandjean; Koenraad Mariën; Emily Oken; Mineshi Sakamoto; Rita Schoeny; Pal Weihe; Chong-Huai Yan; Akira Yasutake
Fish and shellfish are widely available foods that provide important nutrients, particularly n-3 polyunsaturated fatty acids (n-3 PUFAs), to many populations globally. These nutrients, especially docosahexaenoic acid, confer benefits to brain and visual system development in infants and reduce risks of certain forms of heart disease in adults. However, fish and shellfish can also be a major source of methylmercury (MeHg), a known neurotoxicant that is particularly harmful to fetal brain development. This review documents the latest knowledge on the risks and benefits of seafood consumption for perinatal development of infants. It is possible to choose fish species that are both high in n-3 PUFAs and low in MeHg. A framework for providing dietary advice for women of childbearing age on how to maximize the dietary intake of n-3 PUFAs while minimizing MeHg exposures is suggested.