Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Palanisamy Arulselvan is active.

Publication


Featured researches published by Palanisamy Arulselvan.


Oxidative Medicine and Cellular Longevity | 2016

Role of Antioxidants and Natural Products in Inflammation

Palanisamy Arulselvan; Masoumeh Tangestani Fard; Woan Sean Tan; Sivapragasam Gothai; Sharida Fakurazi; Mohd Esa Norhaizan; Suresh Kumar

Inflammation is a comprehensive array of physiological response to a foreign organism, including human pathogens, dust particles, and viruses. Inflammations are mainly divided into acute and chronic inflammation depending on various inflammatory processes and cellular mechanisms. Recent investigations have clarified that inflammation is a major factor for the progression of various chronic diseases/disorders, including diabetes, cancer, cardiovascular diseases, eye disorders, arthritis, obesity, autoimmune diseases, and inflammatory bowel disease. Free radical productions from different biological and environmental sources are due to an imbalance of natural antioxidants which further leads to various inflammatory associated diseases. In this review article, we have outlined the inflammatory process and its cellular mechanisms involved in the progression of various chronic modern human diseases. In addition, we have discussed the role of free radicals-induced tissue damage, antioxidant defence, and molecular mechanisms in chronic inflammatory diseases/disorders. The systematic knowledge regarding the role of inflammation and its associated adverse effects can provide a clear understanding in the development of innovative therapeutic targets from natural sources that are intended for suppression of various chronic inflammations associated diseases.


Molecules | 2012

Moringa oleifera Hydroethanolic Extracts Effectively Alleviate Acetaminophen-Induced Hepatotoxicity in Experimental Rats through Their Antioxidant Nature

Sharida Fakurazi; Syazana Akmal Sharifudin; Palanisamy Arulselvan

The aim of the study was to investigate the in vitro antioxidant properties Moringa oleifera Lam. (MO) extracts and its curative role in acetaminophen (APAP)- induced toxic liver injury in rats caused by oxidative damage. The total phenolic content and antioxidant properties of hydroethanolic extracts of different MO edible parts were investigated by employing an established in vitro biological assay. In the antihepatotoxic study, either flowers or leaves extract (200 mg/kg or 400 mg/kg, i.p) were administered an hour after APAP administration, respectively. N-Acetylcysteine was used as the positive control against APAP-induced hepatotoxicity. The levels of liver markers such as alanine aminotransferase (ALT) and the levels of oxidative damage markers including malondialdehyde (MDA), 4-hydroxynonenal (4-HNE) protein adduct, reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) were analysed and compared between experimental groups. Among MO edible parts the flower extracts contain the highest total phenolic content and antioxidant capacity, followed by leaves extract. The oxidative marker MDA, as well as 4-HNE protein adduct levels were elevated and GSH, SOD and CAT were significantly decreased in groups treated with hepatotoxin. The biochemical liver tissue oxidative markers measured in the rats treated with MO flowers and leaves hydroethanolic extracts showed a significant (p < 0.05) reduction in the severity of the liver damage. The results of this study strongly indicate the therapeutic properties of MO hydroethanolic extracts against acute liver injury and thereby scientifically support its traditional use.


Pharmaceutical Biology | 2013

Therapeutic potential of Moringa oleifera extracts against acetaminophen-induced hepatotoxicity in rats

Syazana Akmal Sharifudin; Sharida Fakurazi; Mohamad Taufik Hidayat; Ithnin Hairuszah; Mohamad Aris Mohd Moklas; Palanisamy Arulselvan

Context: Moringa oleifera Lam. (Moringaceae) is a rich source of essential minerals and antioxidants; it has been used in human and animal nutrition. The leaves and flowers are being used by the population with great dietary importance. Objective: The present study was to investigate the therapeutic effects of the hydroethanolic extract of Moringa oleifera (MO) leaves and flowers against hepatotoxicity induced by acetaminophen (APAP) in rats. Materials and methods: In the hepatoprotective study, either flowers or leaves of hydroethanolic extract (200 or 400 mg/kg bw through IP injection) were administered an hour after APAP administration. N-Acetylcysteine (NAC) was used as the positive control for this study. Liver and kidney function tests including lipid peroxidation levels were analyzed and histopathological changes of liver and kidney were also observed. Results: Acetaminophen-induced hepatotoxicity increased the activities of liver marker enzymes. Histologically, the liver was observed to have inflammation and bridging necrosis. Liver marker enzymes were significantly reduced when treated with flower and leaf extracts of MO in animals with APAP induced toxicity. In addition, there were no significant changes observed in clinical markers of kidney function. Histological observation on liver tissue from the rats treated with MO flower and leaf extract showed reduction in the severity of the liver damage. Discussion and conclusion: These results indicated the possible therapeutic action of flower and leaf extract from MO in protecting liver damage in rats given an over dosage of APAP.


International Journal of Nanomedicine | 2013

Development of a controlled-release anti-parkinsonian nanodelivery system using levodopa as the active agent

Aminu Umar Kura; Samer Hasan Hussein Al Ali; Mohd Zobir Hussein; Sharida Fakurazi; Palanisamy Arulselvan

A new layered organic–inorganic nanocomposite material with an anti-parkinsonian active compound, L-3-(3,4-dihydroxyphenyl) alanine (levodopa), intercalated into the inorganic interlayers of a Zn/Al-layered double hydroxide (LDH) was synthesized using a direct coprecipitation method. The resulting nanocomposite was composed of the organic moiety, levodopa, sandwiched between Zn/Al-LDH inorganic interlayers. The basal spacing of the resulting nano-composite was 10.9 Å. The estimated loading of levodopa in the nanocomposite was approximately 16% (w/w). A Fourier transform infrared study showed that the absorption bands of the nanocomposite were characteristic of both levodopa and Zn/Al-LDH, which further confirmed intercalation, and that the intercalated organic moiety in the nanocomposite was more thermally stable than free levodopa. The resulting nanocomposite showed sustained-release properties, so can be used in a controlled-release formulation. Cytotoxicity analysis using an MTT assay also showed increased cell viability of 3T3 cells exposed to the newly synthesized nanocomposite compared with those exposed to pure levodopa after 72 hours of exposure.


International Scholarly Research Notices | 2013

Protective Nature of Mangiferin on Oxidative Stress and Antioxidant Status in Tissues of Streptozotocin-Induced Diabetic Rats

Periyar Selvam Sellamuthu; Palanisamy Arulselvan; Subban Kamalraj; Sharida Fakurazi; Murugesan Kandasamy

Oxidative stress plays an important role in the progression of diabetes complications. The aim of the present study was to investigate the beneficial effect of oral administration of mangiferin in streptozotocin (STZ)-induced diabetic rats by measuring the oxidative indicators in liver and kidney as well as the ameliorative properties. Administration of mangiferin to diabetic rats significantly decreased blood glucose and increased plasma insulin levels. The activities of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) and level of reduced glutathione (GSH) were significantly (P < 0.05) decreased while increases in the levels of lipidperoxidation (LPO) markers were observed in liver and kidney tissues of diabetic control rats as compared to normal control rats. Oral treatment with mangiferin (40 mg/kg b.wt/day) for a period of 30 days showed significant ameliorative effects on all the biochemical and oxidative parameters studied. Diabetic rats treated with mangiferin restored almost normal architecture of liver and kidney tissues, which was confirmed by histopathological examination. These results indicated that mangiferin has potential ameliorative effects in addition to its antidiabetic effect in experimentally induced diabetic rats.


Chemistry Central Journal | 2013

Sustained release formulation of an anti-tuberculosis drug based on para-amino salicylic acid-zinc layered hydroxide nanocomposite

Bullo Saifullah; Mohd Zobir Hussein; Samer Hasan Hussein-Al-Ali; Palanisamy Arulselvan; Sharida Fakurazi

BackgroundTuberculosis (TB), is caused by the bacteria, Mycobacterium tuberculosis and its a threat to humans since centuries. Depending on the type of TB, its treatment can last for 6–24 months which is a major cause for patients non-compliance and treatment failure. Many adverse effects are associated with the currently available TB medicines, and there has been no new anti-tuberculosis drug on the market for more than 50 year, as the drug development is very lengthy and budget consuming process.Development of the biocompatible nano drug delivery systems with the ability to minimize the side effects of the drugs, protection of the drug from enzymatic degradation. And most importantly the drug delivery systems which can deliver the drug at target site would increase the therapeutic efficacy. Nanovehicles with their tendency to release the drug in a sustained manner would result in the bioavalibilty of the drugs in the body for a longer period of time and this would reduce the dosing frequency in drug administration. The biocompatible nanovehicles with the properties like sustained release of drug of the target site, protection of the drug from physio-chemical degradation, reduction in dosing frequency, and prolong bioavailability of drug in the body would result in the shortening of the treatment duration. All of these factors would improve the patient compliance with chemotherapy of TB.ResultAn anti-tuberculosis drug, 4-amino salicylic acid (4-ASA) was successfully intercalated into the interlamellae of zinc layered hydroxide (ZLH) via direct reaction with zinc oxide suspension. The X-ray diffraction patterns and FTIR analyses indicate that the molecule was successfully intercalated into the ZLH interlayer space with an average basal spacing of 24 Å. Furthermore, TGA and DTG results show that the drug 4-ASA is stabilized in the interlayers by electrostatic interaction. The release of 4-ASA from the nanocomposite was found to be in a sustained manner. The nanocomposite treated with normal 3T3 cells shows it reduces cell viability in a dose- and time-dependent manner.ConclusionsSustained release formulation of the nanocomposite, 4-ASA intercalated into zinc layered hydroxides, with its ease of preparation, sustained release of the active and less-toxic to the cell is a step forward for a more patient-friendly chemotherapy of Tuberculosis.


Chemistry Central Journal | 2013

Synthesis of (cinnamate-zinc layered hydroxide) intercalation compound for sunscreen application

Sumaiyah Megat Nabil Mohsin; Mohd Zobir Hussein; Siti Halimah Sarijo; Sharida Fakurazi; Palanisamy Arulselvan; Taufiq-Yap Yun Hin

BackgroundZinc layered hydroxide (ZLH) intercalated with cinnamate, an anionic form of cinnamic acid (CA), an efficient UVA and UVB absorber, have been synthesized by direct method using zinc oxide (ZnO) and cinnamic acid as the precursor.ResultsThe resulting obtained intercalation compound, ZCA, showed a basal spacing of 23.9 Å as a result of cinnamate intercalated in a bilayer arrangement between the interlayer spaces of ZLH with estimated percentage loading of cinnamate of about 40.4 % w/w. The UV–vis absorption spectrum of the intercalation compound showed excellent UVA and UVB absorption ability. Retention of cinnamate in ZLH interlayers was tested against media usually came across with sunscreen usage to show low release over an extended period of time. MTT assay of the intercalation compound on human dermal fibroblast (HDF) cells showed cytotoxicity of ZCA to be concentration dependent and is overall less toxic than its precursor, ZnO.Conclusions(Cinnamate-zinc layered hydroxide) intercalation compound is suitable to be used as a safe and effective sunscreen with long UV protection effect.


Molecules | 2012

Design, Synthesis and Antiviral Potential of 14-Aryl/Heteroaryl-14H-dibenzo[a,j]xanthenes Using an Efficient Polymer-Supported Catalyst

Kalla Reddi Mohan Naidu; Balam Satheesh Krishna; Mungara Anil Kumar; Palanisamy Arulselvan; Shaik Ibrahim Khalivulla

Polyethyleneglycol bound sulfonic acid (PEG-OSO3H), a chlorosulphonic acid-modified polyethylene glycol was successfully used as an efficient and eco-friendly polymeric catalyst in the synthesis of 14-aryl/heteroaryl-14H-dibenzo[a,j]xanthenes obtained from the reaction of 2-naphthol and carbonyl compounds under solvent-free conditions with short reaction times and excellent yields. The biological properties of these synthesized title compounds revealed that compounds 3b, 3c, 3f and 3i showed highly significant anti-viral activity against tobacco mosaic virus.


International Journal of Nanomedicine | 2013

Preparation and controlled-release studies of a protocatechuic acid-magnesium/aluminum-layered double hydroxide nanocomposite.

Farahnaz Barahuie; Mohd Zobir Hussein; Samer Hasan Hussein-Al-Ali; Palanisamy Arulselvan; Sharida Fakurazi; Zulkarnain Zainal

In the study reported here, magnesium/aluminum (Mg/Al)-layered double hydroxide (LDH) was intercalated with an anticancer drug, protocatechuic acid, using ion-exchange and direct coprecipitation methods, with the resultant products labeled according to the method used to produce them: “PANE” (ie, protocatechuic acid-Mg/Al nanocomposite synthesized using the ion-exchange method) and “PAND” (ie, protocatechuic acid-Mg/Al nanocomposite synthesized using the direct method), respectively. Powder X-ray diffraction and Fourier transform infrared spectroscopy confirmed the intercalation of protocatechuic acid into the inter-galleries of Mg/Al-LDH. The protocatechuic acid between the interlayers of PANE and PAND was found to be a monolayer, with an angle from the z-axis of 8° for PANE and 15° for PAND. Thermogravimetric and differential thermogravimetric analysis results revealed that the thermal stability of protocatechuic acid was markedly enhanced upon intercalation. The loading of protocatechuic acid in PANE and PAND was estimated to be about 24.5% and 27.5% (w/w), respectively. The in vitro release study of protocatechuic acid from PANE and PAND in phosphate-buffered saline at pH 7.4, 5.3, and 4.8 revealed that the nanocomposites had a sustained release property. After 72 hours incubation of PANE and PAND with MCF-7 human breast cancer and HeLa human cervical cancer cell lines, it was found that the nanocomposites had suppressed the growth of these cancer cells, with a half maximal inhibitory concentration of 35.6 μg/mL for PANE and 36.0 μg/mL for PAND for MCF-7 cells, and 19.8 μg/mL for PANE and 30.3 μg/mL for PAND for HeLa cells. No half maximal inhibitory concentration for either nanocomposite was found for 3T3 cells.


BioMed Research International | 2013

In Vitro Wound Healing Potential and Identification of Bioactive Compounds from Moringa oleifera Lam

Abubakar Amali Muhammad; Nur Aimi Syarina Pauzi; Palanisamy Arulselvan; Faridah Abas; Sharida Fakurazi

Moringa oleifera Lam. (M. oleifera) from the monogeneric family Moringaceae is found in tropical and subtropical countries. The present study was aimed at exploring the in vitro wound healing potential of M. oleifera and identification of active compounds that may be responsible for its wound healing action. The study included cell viability, proliferation, and wound scratch test assays. Different solvent crude extracts were screened, and the most active crude extract was further subjected to differential bioguided fractionation. Fractions were also screened and most active aqueous fraction was finally obtained for further investigation. HPLC and LC-MS/MS analysis were used for identification and confirmation of bioactive compounds. The results of our study demonstrated that aqueous fraction of M. oleifera significantly enhanced proliferation and viability as well as migration of human dermal fibroblast (HDF) cells compared to the untreated control and other fractions. The HPLC and LC-MS/MS studies revealed kaempferol and quercetin compounds in the crude methanolic extract and a major bioactive compound Vicenin-2 was identified in the bioactive aqueous fraction which was confirmed with standard Vicenin-2 using HPLC and UV spectroscopic methods. These findings suggest that bioactive fraction of M. oleifera containing Vicenin-2 compound may enhance faster wound healing in vitro.

Collaboration


Dive into the Palanisamy Arulselvan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bullo Saifullah

Universiti Putra Malaysia

View shared research outputs
Top Co-Authors

Avatar

S. Suresh Kumar

Universiti Putra Malaysia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mariappan Rajan

Madurai Kamaraj University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akon Higuchi

National Central University

View shared research outputs
Researchain Logo
Decentralizing Knowledge