Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Palaniyandi Ravanan is active.

Publication


Featured researches published by Palaniyandi Ravanan.


Frontiers in Cellular Neuroscience | 2014

A Molecular Web: Endoplasmic Reticulum Stress, Inflammation, and Oxidative Stress

Namrata Chaudhari; Priti Talwar; Avinash Parimisetty; Christian Lefebvre d’Hellencourt; Palaniyandi Ravanan

Execution of fundamental cellular functions demands regulated protein folding homeostasis. Endoplasmic reticulum (ER) is an active organelle existing to implement this function by folding and modifying secretory and membrane proteins. Loss of protein folding homeostasis is central to various diseases and budding evidences suggest ER stress as being a major contributor in the development or pathology of a diseased state besides other cellular stresses. The trigger for diseases may be diverse but, inflammation and/or ER stress may be basic mechanisms increasing the severity or complicating the condition of the disease. Chronic ER stress and activation of the unfolded-protein response (UPR) through endogenous or exogenous insults may result in impaired calcium and redox homeostasis, oxidative stress via protein overload thereby also influencing vital mitochondrial functions. Calcium released from the ER augments the production of mitochondrial Reactive Oxygen Species (ROS). Toxic accumulation of ROS within ER and mitochondria disturbs fundamental organelle functions. Sustained ER stress is known to potentially elicit inflammatory responses via UPR pathways. Additionally, ROS generated through inflammation or mitochondrial dysfunction could accelerate ER malfunction. Dysfunctional UPR pathways have been associated with a wide range of diseases including several neurodegenerative diseases, stroke, metabolic disorders, cancer, inflammatory disease, diabetes mellitus, cardiovascular disease, and others. In this review, we have discussed the UPR signaling pathways, and networking between ER stress-induced inflammatory pathways, oxidative stress, and mitochondrial signaling events, which further induce or exacerbate ER stress.


Journal of Inflammation | 2010

Signaling pathways involved in LPS induced TNFalpha production in human adipocytes.

Laurence Hoareau; Karima Bencharif; Philippe Rondeau; Ravi Kumar Murumalla; Palaniyandi Ravanan; Frank Tallet; Pierre Delarue; Maya Césari; Régis Roche; Franck Festy

BackgroundThe development of obesity has been linked to an inflammatory process, and the role of adipose tissue in the secretion of pro-inflammatory molecules such as IL-6 or TNFalpha has now been largely confirmed. Although TNFalpha secretion by adipose cells is probably induced, most notably by TLR ligands, the activation and secretion pathways of this cytokine are not yet entirely understood. Moreover, given that macrophagic infiltration is a characteristic of obesity, it is difficult to clearly establish the level of involvement of the different cellular types present within the adipose tissue during inflammation.MethodsPrimary cultures of human adipocytes and human peripheral blood mononuclear cells were used. Cells were treated with a pathogen-associated molecular pattern: LPS, with and without several kinase inhibitors. Western blot for p38 MAP Kinase was performed on cell lysates. TNFalpha mRNA was detected in cells by RT-PCR and TNFalpha protein was detected in supernatants by ELISA assays.ResultsWe show for the first time that the production of TNFalpha in mature human adipocytes is mainly dependent upon two pathways: NFkappaB and p38 MAP Kinase. Moreover, we demonstrate that the PI3Kinase pathway is clearly involved in the first step of the LPS-pathway. Lastly, we show that adipocytes are able to secrete a large amount of TNFalpha compared to macrophages.ConclusionThis study clearly demonstrates that the LPS induced activation pathway is an integral part of the inflammatory process linked to obesity, and that adipocytes are responsible for most of the secreted TNFalpha in inflamed adipose tissue, through TLR4 activation.


Obesity | 2009

Anti-inflammatory Effect of Palmitoylethanolamide on Human Adipocytes

Laurence Hoareau; Marion Buyse; Franck Festy; Palaniyandi Ravanan; Marie-Paule Gonthier; Isabel Matias; Stefania Petrosino; Frank Tallet; Christian Lefebvre d'Hellencourt; Maya Césari; Vincenzo Di Marzo; Régis Roche

Obesity leads to the appearance of an inflammatory process, which can be initiated even with a moderate weight gain. Palmitoylethanolamide (PEA) is an endogenous lipid, secreted by human adipocytes, that possesses numerous anti‐inflammatory properties. The main purpose of this study was to investigate the anti‐inflammatory effect of PEA on human adipocytes, as well as in a murine model. The production of tumor necrosis factor–α (TNF‐α) by lipopolysaccharide (LPS)‐treated human subcutaneous adipocytes in primary culture and CF‐1 mice was investigated by enzyme‐linked immunosorbent assay. The effects of PEA on adipocyte TNF‐α secretion were explored as well as some suspected PEA anti‐inflammatory pathways: nuclear factor–κB (NF‐κB) pathway, peroxisome proliferator‐activated receptor–α (PPAR‐α) gene expression, and TNF‐α‐converting enzyme (TACE) activity. The effects of PEA on the TNF‐α serum concentration in intraperitoneally LPS‐treated mice were also studied. We demonstrate that the LPS induced secretion of TNF‐α by human adipocytes is inhibited by PEA. This action is neither linked to a reduction in TNF‐α gene transcription nor to the inhibition of TACE activity. Moreover, PPAR‐α is not implicated in this anti‐inflammatory activity. Lastly, PEA exhibits a wide‐reaching anti‐inflammatory action as the molecule is able to completely inhibit the strong increase in TNF‐α levels in the serum of mice treated with high doses of LPS. In view of its virtual lack of toxicity, PEA might become a potentially interesting candidate molecule in the prevention of obesity‐associated insulin resistance.


Journal of Neuroinflammation | 2016

Secret talk between adipose tissue and central nervous system via secreted factors—an emerging frontier in the neurodegenerative research

Avinash Parimisetty; Anne-Claire Dorsemans; Rana Awada; Palaniyandi Ravanan; Nicolas Diotel; Christian Lefebvre d’Hellencourt

First seen as a storage organ, the white adipose tissue (WAT) is now considered as an endocrine organ. WAT can produce an array of bioactive factors known as adipokines acting at physiological level and playing a vital role in energy metabolism as well as in immune response. The global effect of adipokines in metabolic activities is well established, but their impact on the physiology and the pathophysiology of the central nervous system (CNS) remains poorly defined. Adipokines are not only produced by the WAT but can also be expressed in the CNS where receptors for these factors are present. When produced in periphery and to affect the CNS, these factors may either cross the blood brain barrier (BBB) or modify the BBB physiology by acting on cells forming the BBB. Adipokines could regulate neuroinflammation and oxidative stress which are two major physiological processes involved in neurodegeneration and are associated with many chronic neurodegenerative diseases. In this review, we focus on four important adipokines (leptin, resistin, adiponectin, and TNFα) and one lipokine (lysophosphatidic acid—LPA) associated with autotaxin, its producing enzyme. Their potential effects on neurodegeneration and brain repair (neurogenesis) will be discussed. Understanding and regulating these adipokines could be an interesting lead to novel therapeutic strategy in order to counteract neurodegenerative disorders and/or promote brain repair.


PLOS ONE | 2013

Interleukin-1 Receptor-Associated Kinase-2 (IRAK2) Is a Critical Mediator of Endoplasmic Reticulum (ER) Stress Signaling

Samir Benosman; Palaniyandi Ravanan; Ricardo G. Correa; Ying Chen Hou; Minjia Yu; Muhammet Fatih Gulen; Xiaoxia Li; James A. Thomas; Michael Cuddy; Yasuko Matsuzawa; Renata Sano; Paul Diaz; Shu Ichi Matsuzawa; John C. Reed

Endoplasmic reticulum (ER) stress occurs when unfolded proteins accumulate in the lumen of the organelle, triggering signal transduction events that contribute either to cellular adaptation and recovery or alternatively to cellular dysfunction and death. ER stress has been implicated in numerous diseases. To identify novel modulators of ER stress, we undertook a siRNA library screen of the kinome, revealing Interleukin-1 Receptor-Associated Kinase-2 (IRAK2) as a contributor to unfolded protein response (UPR) signaling and ER stress-induced cell death. Knocking down expression of IRAK2 (but not IRAK1) in cultured mammalian cells suppresses ER stress-induced expression of the pro-apoptotic transcription factor CHOP and activation of stress kinases. Similarly, RNAi-mediated silencing of the IRAK family member Tube (but not Pelle) suppresses activation of stress kinase signaling induced by ER stress in Drosophila cells. The action of IRAK2 maps to the IRE1 pathway, rather than the PERK or ATF6 components of the UPR. Interestingly, ER stress also induces IRAK2 gene expression in an IRE1/XBP1-dependent manner, suggesting a mutually supporting amplification loop involving IRAK2 and IRE1. In vivo, ER stress induces Irak2 expression in mice. Moreover, Irak2 gene knockout mice display defects in ER stress-induced CHOP expression and IRE1 pathway signaling. These findings demonstrate an unexpected linkage of the innate immunity machinery to UPR signaling, revealing IRAK2 as a novel amplifier of the IRE1 pathway.


Frontiers in Molecular Neuroscience | 2016

Death Associated Protein Kinase 1 (DAPK1): A Regulator of Apoptosis and Autophagy

Pratibha Singh; Palaniyandi Ravanan; Priti Talwar

Death-Associated Protein Kinase 1 (DAPK1) belongs to a family of five serine/threonine (Ser/Thr) kinases that possess tumor suppressive function and also mediate a wide range of cellular processes, including apoptosis and autophagy. The loss and gain-of–function of DAPK1 is associated with various cancer and neurodegenerative diseases respectively. In recent years, mechanistic studies have broadened our knowledge of the molecular mechanisms involved in DAPK1-mediated autophagy/apoptosis. In the present review, we have discussed the structural information and various cellular functions of DAPK1 in a comprehensive manner.


Molecular Cancer Therapeutics | 2011

Synthetic Triterpenoid Cyano Enone of Methyl Boswellate Activates Intrinsic, Extrinsic, and Endoplasmic Reticulum Stress Cell Death Pathways in Tumor Cell Lines

Palaniyandi Ravanan; Renata Sano; Priti Talwar; Satoshi Ogasawara; Shu-ichi Matsuzawa; Michael Cuddy; Sanjay Singh; G. S. R. Subba Rao; Paturu Kondaiah; John C. Reed

We explored the effect of a novel synthetic triterpenoid compound cyano enone of methyl boswellates (CEMB) on various prostate cancer and glioma cancer cell lines. CEMB displayed concentration-dependent cytotoxic activity with submicromolar lethal dose 50% (LD50) values in 10 of 10 tumor cell lines tested. CEMB-induced cytotoxicity is accompanied by activation of downstream effector caspases (caspases 3 and 7) and by upstream initiator caspases involved in both the extrinsic (caspase 8) and intrinsic (caspase 9) apoptotic pathways. By using short interfering RNAs (siRNA), we show evidence that knockdown of caspase 8, DR4, Apaf-1, and Bid impairs CEMB-induced cell death. Similar to other proapoptotic synthetic triterpenoid compounds, CEMB-induced apoptosis involved endoplasmic reticulum stress, as shown by partial rescue of tumor cells by siRNA-mediated knockdown of expression of genes involved in the unfolded protein response such as IRE1α, PERK, and ATF6. Altogether, our results suggest that CEMB stimulates several apoptotic pathways in cancer cells, suggesting that this compound should be evaluated further as a potential agent for cancer therapy. Mol Cancer Ther; 10(9); 1635–43. ©2011 AACR.


Frontiers in Genetics | 2014

In silico identification of genetic variants in glucocerebrosidase (GBA) gene involved in Gaucher's disease using multiple software tools

Madhumathi Manickam; Palaniyandi Ravanan; Pratibha Singh; Priti Talwar

Gauchers disease (GD) is an autosomal recessive disorder caused by the deficiency of glucocerebrosidase, a lysosomal enzyme that catalyses the hydrolysis of the glycolipid glucocerebroside to ceramide and glucose. Polymorphisms in GBA gene have been associated with the development of Gaucher disease. We hypothesize that prediction of SNPs using multiple state of the art software tools will help in increasing the confidence in identification of SNPs involved in GD. Enzyme replacement therapy is the only option for GD. Our goal is to use several state of art SNP algorithms to predict/address harmful SNPs using comparative studies. In this study seven different algorithms (SIFT, MutPred, nsSNP Analyzer, PANTHER, PMUT, PROVEAN, and SNPs&GO) were used to predict the harmful polymorphisms. Among the seven programs, SIFT found 47 nsSNPs as deleterious, MutPred found 46 nsSNPs as harmful. nsSNP Analyzer program found 43 out of 47 nsSNPs are disease causing SNPs whereas PANTHER found 32 out of 47 as highly deleterious, 22 out of 47 are classified as pathological mutations by PMUT, 44 out of 47 were predicted to be deleterious by PROVEAN server, all 47 shows the disease related mutations by SNPs&GO. Twenty two nsSNPs were commonly predicted by all the seven different algorithms. The common 22 targeted mutations are F251L, C342G, W312C, P415R, R463C, D127V, A309V, G46E, G202E, P391L, Y363C, Y205C, W378C, I402T, S366R, F397S, Y418C, P401L, G195E, W184R, R48W, and T43R.


Bioorganic & Medicinal Chemistry Letters | 2013

Design, synthesis and evaluation of inhibitor of apoptosis protein (IAP) antagonists that are highly selective for the BIR2 domain of XIAP.

Robert Ardecky; Kate Welsh; Darren Finlay; Pooi San Lee; Marcos González-López; Santhi Ganji; Palaniyandi Ravanan; Peter D. Mace; Kristiina Vuori; John C. Reed; Nicholas D. P. Cosford

We recently reported the systematic ligand-based rational design and synthesis of monovalent Smac mimetics that bind preferentially to the BIR2 domain of the anti-apoptotic protein XIAP. Expanded structure-activity relationship (SAR) studies around these peptidomimetics led to compounds with significantly improved selectivity (>60-fold) for the BIR2 domain versus the BIR3 domain of XIAP. The potent and highly selective IAP antagonist 8q (ML183) sensitized TRAIL-resistant prostate cancer cells to apoptotic cell death, highlighting the merit of this probe compound as a valuable tool to investigate the biology of XIAP.


Cytokine | 2011

Exposure to an organometal compound stimulates adipokine and cytokine expression in white adipose tissue.

Palaniyandi Ravanan; G. Jean Harry; Rana Awada; Laurence Hoareau; Frank Tallet; Régis Roche; Christian Lefebvre d’Hellencourt

OBJECTIVE White adipose tissue (WAT) is now considered a defined tissue capable of interactions with other organ systems. WAT role in elevating the level of systemic chronic inflammation suggests that alterations in this tissue as the result of disease or environmental factors may influence the development and progression of various obesity-related pathologies. This study investigated WAT cell-specific responses to an organometal compound, trimethyltin (TMT), to determine possible contribution to induced inflammation. METHODS Human primary mature adipocytes and macrophage differentiated THP-1 cells were cultured in TMT presence and relative toxicities and different adipokine levels were determined. The inflammatory response was examined in TMT presence for primary cells from obese ob/ob mice WAT, and after TMT injection in ob/ob mice. RESULTS Both adipocytes and macrophages were resistant to cell death induced by TMT. However, adipocytes cultured in TMT presence showed increased expression of TNFα and IL-6, and modified leptin levels. In macrophage cultures, TMT also increased TNFα and IL-6, while MCP-1 and MIP-1α were decreased. In vivo, a single injection of TMT in ob/ob mice, elevated TNFα, MIP-1α and adiponectin in WAT. CONCLUSIONS Elevation of the inflammatory related products can be induced by chemical exposure in adipocytes and macrophages, as well as murine WAT. These data suggest that numerous factors, including a systemic chemical exposure, can induce an inflammatory response from the WAT. Furthermore, when characterizing both chemical-induced toxicity and the progression of the chronic inflammation associated with elevated WAT content, such responses in this target tissue should be taken into consideration.

Collaboration


Dive into the Palaniyandi Ravanan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Régis Roche

University of La Réunion

View shared research outputs
Top Co-Authors

Avatar

G. S. R. Subba Rao

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paturu Kondaiah

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge