Palaniyandi Velusamy
SRM University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Palaniyandi Velusamy.
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2013
Jayabrata Das; M. Paul Das; Palaniyandi Velusamy
Simple, effective and rapid approach for the green synthesis of silver nanoparticles (AgNPs) using leaf extract of Sesbania grandiflora and their in vitro antibacterial activity against selected human pathogens has been demonstrated in the study. Various instrumental techniques were adopted to characterize the synthesized AgNPs viz. UV-Vis, FTIR, XRD, TEM, EDX and AFM. Surface Plasmon spectra for AgNPs are centered at 422 nm with dark brown color. The synthesized AgNPs were found to be spherical in shape with size in the range of 10-25 nm. The presence of water soluble proteins in the leaf extract was identified by FTIR which were found to be responsible for the reduction of silver ions (Ag(+)) to AgNPs. Moreover, the synthesized AgNPs showed potent antibacterial activity against multi-drug resistant (MDR) bacteria such as Salmonella enterica and Staphylococcus aureus.
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2013
V. Gopinath; Palaniyandi Velusamy
In last few decades nanoparticles have attracted and emerged as a field in biomedical research due to their incredible applications. The current research was focused on extracellular synthesis of silver nanoparticles (AgNPs) using cell free culture supernatant of strain GP-23. It was found that the strain GP-23 belonged to Bacillus species by 16S rRNA sequence analysis. Biosynthesis of AgNPs was achieved by addition of culture supernatant with aqueous silver nitrate solution, after 24 h it turned to brown color solution with a peak at 420 nm corresponding to the Plasmon absorbance of AgNPs by UV-Vis Spectroscopy. The nanoparticles were characterized by FTIR, XRD, HRTEM, EDX and AFM. The synthesized nanoparticles were found to be spherical in shape with size in the range of 7-21 nm. It was stable in aqueous solution for five months period of storage at room temperature under dark condition. The biosynthesized AgNPs exhibited strong antifungal activity against plant pathogenic fungus, Fusarium oxysporum at the concentration of 8 μg ml(-1). The results suggest that the synthesized AgNPs act as an effective antifungal agent/fungicide.
Toxicological research | 2016
Palaniyandi Velusamy; Govindarajan Venkat Kumar; Venkadapathi Jeyanthi; Jayabrata Das; Raman Pachaiappan
In the recent years, noble nanoparticles have attracted and emerged in the field of biology, medicine and electronics due to their incredible applications. There were several methods have been used for synthesis of nanoparticles such as toxic chemicals and high energy physical procedures. To overcome these, biological method has been used for the synthesis of various metal nanoparticles. Among the nanoparticles, silver nanoparticles (AgNPs) have received much attention in various fields, such as antimicrobial activity, therapeutics, bio-molecular detection, silver nanocoated medical devices and optical receptor. Moreover, the biological approach, in particular the usage of natural organisms has offered a reliable, simple, nontoxic and environmental friendly method. Hence, the current article is focused on the biological synthesis of silver nanoparticles and their application in the biomedical field.
Microbial Pathogenesis | 2016
Sathappan Shanthi; Barbanas David Jayaseelan; Palaniyandi Velusamy; Sekar Vijayakumar; Cheng Ta Chih; Baskaralingam Vaseeharan
In the present study, we synthesized and characterized a probiotic Bacillus licheniformis cell free extract (BLCFE) coated silver nanoparticles (BLCFE-AgNPs). These BLCFE-AgNPs were characterized by UV-visible spectrophotometer, XRD, EDX, FTIR, TEM and AFM. A strong surface plasmon resonance centered at 422 nm in UV-visible spectrum indicates the formation of AgNPs. The XRD spectrum of silver nanoparticles exhibited 2θ values corresponding to the silver nanocrystal. TEM and AFM showed the AgNPs were spherical in shape within the range of 18.69-63.42 nm and the presence of silver was confirmed by EDX analysis. Light and Confocal Laser Scanning Microscope (CLSM) images showed a weak adherence and disintegrated biofilm formation of Vibrio parahaemolyticus Dav1 treated with BLCFE-AgNPs compared to control. This result suggests that BLCFE-AgNps may be used for the control of biofilm forming bacterial populations in the biomedical field. In addition, acute toxicity results concluded that BLCFE-AgNPs were less toxic to the fresh water crustacean Ceriodaphnia cornuta (50 μg/ml) when compared to AgNO3 (22 μg/ml). This study also reports a short term analysis (24 h) of uptake and depuration of BLCFE-AgNPs in C. cornuta.
PLOS ONE | 2016
Palaniyandi Velusamy; Chia-Hung Su; Govindarajan Venkat Kumar; Shritama Adhikary; K. Pandian; Subash C. B. Gopinath; Yeng Chen; Periasamy Anbu
In the current study, facile synthesis of carboxymethyl cellulose (CMC) and sodium alginate capped silver nanoparticles (AgNPs) was examined using microwave radiation and aniline as a reducing agent. The biopolymer matrix embedded nanoparticles were synthesized under various experimental conditions using different concentrations of biopolymer (0.5, 1, 1.5, 2%), volumes of reducing agent (50, 100, 150 μL), and duration of heat treatment (30 s to 240 s). The synthesized nanoparticles were analyzed by scanning electron microscopy, UV-Vis spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy for identification of AgNPs synthesis, crystal nature, shape, size, and type of capping action. In addition, the significant antibacterial efficacy and antibiofilm activity of biopolymer capped AgNPs were demonstrated against different bacterial strains, Staphylococcus aureus MTCC 740 and Escherichia coli MTCC 9492. These results confirmed the potential for production of biopolymer capped AgNPs grown under microwave irradiation, which can be used for industrial and biomedical applications.
Rice Science | 2013
Palaniyandi Velusamy; J. Ebenezar Immanuel; S. S. Gnanamanickam
Several bacterial strains were isolated from different rhizospheres. Among these, strain PDY7 exhibited strong antibacterial activity against the rice bacterial blight (BB) pathogen Xanthomonas oryzae pv. oryzae (Xoo) by the laboratory dual plate assays. The antibacterial property of the strain PDY7 was further investigated for the production of 2,4-diacetylphloroglucinol (DAPG), which amplified a characteristic of 629-bp DNA fragment by PCR-based screening method using phlD primers. The application of phlD positive strains was carefully evaluated for disease control and growth promotion of rice plants under field conditions. The selected strain PDY7 suppressed the rice BB by 58.83% and 51.88% under glass house and field conditions, respectively. In addition, the strain PDY7 showed significant two-fold increase in root length (18.08 cm), shoot length (29.81 cm), and grain yield (96.07 g). Strain PDY7 promoted the growth of rice plants by production of indole-3-acetic acid (IAA), which was determined by high performance liquid chromatography (HPLC) analysis. Our findings suggest that PDY7 belongs to the P. fluorescens group and can serve as potential biocontrol of BB as well as biofertilizer agent for growth promotion of rice.
Archive | 2008
Palaniyandi Velusamy; S. S. Gnanamanickam
Certain antagonistic bacteria are considered ideal biological control agents owing to their rapid growth, easy handling and aggressive colonization of the rhizosphere. These bacteria may mediate biocontrol by one or more of the several mechanisms of disease suppression (Weller 1988). A primary mechanism of pathogen inhibition is by the production of secondary metabolites and other factors such as siderophore production and microbial cyanide, and lytic enzymes may also play a role (Fravel 1988; Keel et al. 1992; O’Sullivan and O’Gara 1992). These bacteria are involved in the biological control of bacterial, fungal, and viral diseases of plants. The antagonistic fluorescent pseudomonads produce one or more metabolites, such as phenazine-1-carboxylicacid (PCA), 2,4-diacetylphloroglucinol (DAPG), pyoluteorin , pyrrolnitrin , and oomycin A . Among these, DAPG is an antibiotic produced by fluorescent Pseudomonas spp. of diverse geographic origin (Dowling and O’Gara 1994; Keel et al. 1996; Thomashow and Weller 1995; Raaijmakers et al. 1997). It has been implicated as the mechanism involved in the biological control of some of the most important crop diseases, such as the root rot of wheat caused by Fusarium oxysporum f. sp. graminis (Garagulya et al. 1974), black root rot of tobacco caused by Thielaviopsis basicola (Defago et al. 1990; Keel et al. 1992), damping-off of sugarbeet caused by Pythium ultimum and Rhizoctonia solani (Nowak-Thompson et al. 1994), and the “take-all” of wheat caused by Gaeumannomyces graminis tritici (Defago et al. 1990; Keel et al. 1992). Strains of Pseudomonas fluorescens that produce DAPG also have had a key role in the natural biological control of “take-all” known as “take-all decline” (Raaijmakers et al. 1997). DAPG is a bacterial and plant metabolite (Bangera and Thomashow 1996, 1999; Keel et al. 1992), phenolic in nature, probably of polyketide origin with a broad spectrum of antifungal, antibacterial, antiviral, and antihelminthic properties (Garagulya
Biofouling | 2016
Govindarajan Venkat Kumar; Chia-Hung Su; Palaniyandi Velusamy
Abstract Bacterial adhesion is a major problem that can lead to the infection of implanted urological stents. In this study, kanamycin-chitosan nanoparticles (KMCSNPs) were immobilized on the surface of a polyurethane ureteral stent (PUS) to prevent urinary bacterial infection. KMCSNPs were synthesized using the ionic gelation method. The synthesized KMCSNPs appeared spherical with a ζ-average particle size of 225 nm. KMCSNPs were immobilized on the PUS surface by covalent immobilization techniques. The surface-modified PUS was characterized using attenuated total reflectance Fourier transform infrared spectroscopy, field emission scanning electron microscopy, and energy dispersive X-ray spectroscopy. The surface-modified PUS showed significantly increased antibacterial activity against Escherichia coli MTCC 729 and Proteus mirabilis MTCC 425 relative to the surface of an unmodified PUS. These findings suggest that the KMCSNP-immobilized PUS has the potential to prevent bacterial infection in the human urinary tract.
Journal of General and Applied Microbiology | 2015
Palaniyandi Velusamy; Raman Pachaiappan; Meera Christopher; Baskaralingam Vaseeharan; Periasamy Anbu; Jae-Seong So
A newly isolated strain, CWD-67, which exhibited high fibrinolytic activity, was screened from dumping soils enriched with poultry wastes. The strain was identified as Bacillus tequilensis (KF897935) by 16Sr RNA gene sequence analysis and biochemical characterization. A fibrinolytic enzyme was purified to homogeneity from the culture supernatant using ammonium sulfate precipitation, membrane concentration, dialysis, ion-exchange, and gel filtration chromatography. SDS-PAGE analysis showed that the purified enzyme was a monomeric protein with an apparent molecular weight of 22 kDa, which is the lowest among Bacillus fibrinolytic enzymes reported to date. The purified enzyme was confirmed to have fibrinolytic activity by a fibrin zymogram. The optimal pH and temperature values of the enzyme were 8.0 and 45 °C, respectively. The enzyme was completely inhibited by PMSF and significantly inhibited by EDTA, TPCK, Co(2+), Zn(2+), and Cu(2+), suggesting a chymotrypsin-like serine metalloprotease. In vitro assays revealed that the purified enzyme could catalyze fibrin lysis effectively, indicating that this enzyme could be a useful fibrinolytic agent.
PLOS ONE | 2018
Raman Pachaiappan; Ekant Tamboli; Aurovind Acharya; Chia-Hung Su; Subash C. B. Gopinath; Yeng Chen; Palaniyandi Velusamy
Enzyme hydrolysates (trypsin, papain, pepsin, α-chymotrypsin, and pepsin-pancreatin) of Tinospora cordifolia stem proteins were analyzed for antioxidant efficacy by measuring (1) 1,1-diphenyl-2-picrylhydrazyl (DPPH•) radical scavenging activity, (2) 2,20-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+) radical scavenging capacity, and (3) Fe2+ chelation. Trypsin hydrolysate showed the strongest DPPH• scavenging, while α-chymotrypsin hydrolysate exhibited the highest ABTS+ scavenging and Fe2+ chelation. Undigested protein strongly inhibited the gastrointestinal enzymes, trypsin (50% inhibition at enzyme/substrate ratio = 1:6.9) and α-chymotrypsin (50% inhibition at enzyme/substrate ratio = 1:1.82), indicating the prolonged antioxidant effect after ingestion. Furthermore, gel filtration purified peptide fractions of papain hydrolysates exhibited a significantly higher ABTS+ and superoxide radical scavenging as compared to non-purified digests. Active fraction 9 showing the highest radical scavenging ability was further purified and confirmed by MALDI-TOF MS followed by MS/MS with probable dominant peptide sequences identified are VLYSTPVKMWEPGR, VITVVATAGSETMR, and HIGININSR. The obtained results revealed that free radical scavenging capacity of papain hydrolysates might be related to its consistently low molecular weight hydrophobic peptides.