Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pall Thordarson is active.

Publication


Featured researches published by Pall Thordarson.


Angewandte Chemie | 2010

Carbon Nanomaterials in Biosensors: Should You Use Nanotubes or Graphene?

Wenrong Yang; Kyle R. Ratinac; Simon P. Ringer; Pall Thordarson; J. Justin Gooding; Filip Braet

From diagnosis of life-threatening diseases to detection of biological agents in warfare or terrorist attacks, biosensors are becoming a critical part of modern life. Many recent biosensors have incorporated carbon nanotubes as sensing elements, while a growing body of work has begun to do the same with the emergent nanomaterial graphene, which is effectively an unrolled nanotube. With this widespread use of carbon nanomaterials in biosensors, it is timely to assess how this trend is contributing to the science and applications of biosensors. This Review explores these issues by presenting the latest advances in electrochemical, electrical, and optical biosensors that use carbon nanotubes and graphene, and critically compares the performance of the two carbon allotropes in this application. Ultimately, carbon nanomaterials, although still to meet key challenges in fabrication and handling, have a bright future as biosensors.


Nature Nanotechnology | 2009

Gram-scale production of graphene based on solvothermal synthesis and sonication

Mohammad Choucair; Pall Thordarson; John A. Stride

Carbon nanostructures have emerged as likely candidates for a wide range of applications, driving research into novel synthetic techniques to produce nanotubes, graphene and other carbon-based materials. Single sheets of pristine graphene have been isolated from bulk graphite in small amounts by micromechanical cleavage, and larger amounts of chemically modified graphene sheets have been produced by a number of approaches. Both of these techniques make use of highly oriented pyrolitic graphite as a starting material and involve labour-intensive preparations. Here, we report the direct chemical synthesis of carbon nanosheets in gram-scale quantities in a bottom-up approach based on the common laboratory reagents ethanol and sodium, which are reacted to give an intermediate solid that is then pyrolized, yielding a fused array of graphene sheets that are dispersed by mild sonication. The ability to produce bulk graphene samples from non-graphitic precursors with a scalable, low-cost approach should take us a step closer to real-world applications of graphene.


Nature | 2003

Epoxidation of polybutadiene by a topologically linked catalyst

Pall Thordarson; Edward J. A. Bijsterveld; Alan E. Rowan; Roeland J. M. Nolte

Nature has evolved complex enzyme architectures that facilitate the synthesis and manipulation of the biopolymers DNA and RNA, including enzymes capable of attaching to the biopolymer substrate and performing several rounds of catalysis before dissociating. Many of these ‘processive’ enzymes have a toroidal shape and completely enclose the biopolymer while moving along its chain, as exemplified by the DNA enzymes T4 DNA polymerase holoenzyme and λ-exonucleoase. The overall architecture of these systems resembles that of rotaxanes, in which a long molecule or polymer is threaded through a macrocycle. Here we describe a rotaxane that mimics the ability of processive enzymes to catalyse multiple rounds of reaction while the polymer substrate stays bound. The catalyst consists of a substrate binding cavity incorporating a manganese(III) porphyrin complex that oxidizes alkenes within the toroid cavity, provided a ligand has been attached to the outer face of the toroid to both activate the porphyrin complex and shield it from being able to oxidize alkenes outside the cavity. We find that when threaded onto a polybutadiene polymer strand, this catalyst epoxidizes the double bonds of the polymer, thereby acting as a simple analogue of the enzyme systems.


Nature Nanotechnology | 2007

Real-time single-molecule imaging of oxidation catalysis at a liquid-solid interface

B. Hulsken; Richard van Hameren; J.W. Gerritsen; Tony Khoury; Pall Thordarson; Maxwell J. Crossley; Alan E. Rowan; Roeland J. M. Nolte; Johannes A. A. W. Elemans; S. Speller

Many chemical reactions are catalysed by metal complexes, and insight into their mechanisms is essential for the design of future catalysts. A variety of conventional spectroscopic techniques are available for the study of reaction mechanisms at the ensemble level, and, only recently, fluorescence microscopy techniques have been applied to monitor single chemical reactions carried out on crystal faces and by enzymes. With scanning tunnelling microscopy (STM) it has become possible to obtain, during chemical reactions, spatial information at the atomic level. The majority of these STM studies have been carried out under ultrahigh vacuum, far removed from conditions encountered in laboratory processes. Here we report the single-molecule imaging of oxidation catalysis by monitoring, with STM, individual manganese porphyrin catalysts, in real time, at a liquid-solid interface. It is found that the oxygen atoms from an O2 molecule are bound to adjacent porphyrin catalysts on the surface before their incorporation into an alkene substrate.


Applied Microbiology and Biotechnology | 2006

Well-defined protein–polymer conjugates—synthesis and potential applications

Pall Thordarson; Benjamin Le Droumaguet; Kelly Velonia

During the last decades, numerous studies have focused on combining the unique catalytic/functional properties and structural characteristics of proteins and enzymes with those of synthetic molecules and macromolecules. The aim of such multidisciplinary studies is to improve the properties of the natural component, combine them with those of the synthetic, and create novel biomaterials in the nanometer scale. The specific coupling of polymers onto the protein structures has proved to be one of the most straightforward and applicable approaches in that sense. In this article, we focus on the synthetic pathways that have or can be utilized to specifically couple proteins to polymers. The different categories of well-defined protein–polymer conjugates and the effect of the polymer on the protein function are discussed. Studies have shown that the specific conjugation of a synthetic polymer to a protein conveys its physico-chemical properties and, therefore, modifies the biodistribution and solubility of the protein, making it in certain cases soluble and active in organic solvents. An overview of the applications derived from such bioconjugates in the pharmaceutical industry, biocatalysis, and supramolecular nanobiotechnology is presented at the final part of the article.


Chemistry-an Asian Journal | 2011

Self-Assembled Gels for Biomedical Applications

Warren Ty Truong; Yingying Su; Joris T. Meijer; Pall Thordarson; Filip Braet

Natural and synthetic gel-like materials have featured heavily in the development of biomaterials for wound healing and other tissue-engineering purposes. More recently, molecular gels have been designed and tailored for the same purpose. When mixed with, or conjugated to therapeutic drugs or bioactive molecules, these materials hold great promise for treating/curing life-threatening and degenerative diseases, such as cancer, osteoarthritis, and neural injuries. This focus review explores the latest advances in this field and concentrates on self-assembled gels formed under aqueous conditions (i.e., self-assembled hydrogels), and critically compares their performance within different biomedical applications, including three-dimensional cell-culture studies, drug delivery, and tissue engineering. Although stability and toxicity issues still need to be addressed in more detail, it is clear from the work reviewed here that self-assembled gels have a bright future as novel biomaterials.


Chemical Communications | 2016

The death of the Job plot, transparency, open science and online tools, uncertainty estimation methods and other developments in supramolecular chemistry data analysis

D. Brynn Hibbert; Pall Thordarson

Data analysis is central to understanding phenomena in host-guest chemistry. We describe here recent developments in this field starting with the revelation that the popular Job plot method is inappropriate for most problems in host-guest chemistry and that the focus should instead be on systematically fitting data and testing all reasonable binding models. We then discuss approaches for estimating uncertainties in binding studies using case studies and simulations to highlight key issues. Related to this is the need for ready access to data and transparency in the methodology or software used, and we demonstrate an example a webportal () that aims to address this issue. We conclude with a list of best-practice protocols for data analysis in supramolecular chemistry that could easily be translated to other related problems in chemistry including measuring rate constants or drug IC50 values.


Nanomedicine: Nanotechnology, Biology and Medicine | 2011

Cancer-cell-specific cytotoxicity of non-oxidized iron elements in iron core-gold shell NPs

Ya Na Wu; Dong-Hwang Chen; Xian Yu Shi; Chiao Ching Lian; Ting Yu Wang; Chen-Sheng Yeh; Kyle R. Ratinac; Pall Thordarson; Filip Braet; Dar-Bin Shieh

UNLABELLED Gold-coated iron nanoparticles (NPs) selectively and significantly (P <0.0001) inhibit proliferation of oral- and colorectal-cancer cells in vitro at doses as low as 5 μg/mL, but have little adverse effect on normal healthy control cells. The particle treatment caused delay in cell-cycle progression, especially in the S-phase. There was no significant difference in the NP uptake between cancer and control cells, and cytotoxicity resulted primarily from the iron core, before oxidation, rather than from the Fe ions released from the core. In contrast with magnetic NPs that usually serve as drug carriers, diagnostic probes or hyperthermia media, the iron, before oxidation, in the NPs selectively suppressed cancer cell growth and left healthy control cells unaffected in vitro and in vivo. This novel nanomaterial holds great promise as a therapeutic tool in nanomedicine. FROM THE CLINICAL EDITOR Gold-coated iron nanoparticles (NPs) selectively suppressed squamous cell carcinoma (SCC) and colorectal cancer (CRC) cell growth, but left healthy control cells unaffected both in vitro and in vivo. The particles were equally uptaken by all cells, but delayed cell progression only for cancer cells. The origin is related to the iron core: neither iron ions nor the oxidized NPs have the same outcome.


Angewandte Chemie | 2015

Polymersomes Prepared from Thermoresponsive Fluorescent Protein–Polymer Bioconjugates: Capture of and Report on Drug and Protein Payloads

Chin Ken Wong; Alistair J. Laos; Alexander H. Soeriyadi; Jörg Wiedenmann; Paul M. G. Curmi; J. Justin Gooding; Christopher P. Marquis; Martina H. Stenzel; Pall Thordarson

Polymersomes provide a good platform for targeted drug delivery and the creation of complex (bio)catalytically active systems for research in synthetic biology. To realize these applications requires both spatial control over the encapsulation components in these polymersomes and a means to report where the components are in the polymersomes. To address these twin challenges, we synthesized the protein-polymer bioconjugate PNIPAM-b-amilFP497 composed of thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) and a green-fluorescent protein variant (amilFP497). Above 37 °C, this bioconjugate forms polymersomes that can (co-)encapsulate the fluorescent drug doxorubicin and the fluorescent light-harvesting protein phycoerythrin 545 (PE545). Using fluorescence lifetime imaging microscopy and Förster resonance energy transfer (FLIM-FRET), we can distinguish the co-encapsulated PE545 protein inside the polymersome membrane while doxorubicin is found both in the polymersome core and membrane.


Journal of the American Chemical Society | 2015

Redox- and pH-Responsive Orthogonal Supramolecular Self-Assembly: An Ensemble Displaying Molecular Switching Characteristics

Dong Sub Kim; Jinho Chang; Soojung Leem; Jung Su Park; Pall Thordarson; Jonathan L. Sessler

Two heteroditopic monomers, namely a thiopropyl-functionalized tetrathiafulvalene-annulated calix[4]pyrrole (SPr-TTF-C[4]P 1) and phenyl C61 butyric acid (PCBA 2), have been used to assemble a chemically and electrochemically responsive supramolecular ensemble. Addition of an organic base initiates self-assembly of the monomers via a molecular switching event. This results in the formation of materials that may be disaggregated via the addition of an organic acid or electrolysis.

Collaboration


Dive into the Pall Thordarson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam D. Martin

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Alan E. Rowan

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Justin Gooding

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James E. A. Webb

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Mohan Bhadbhade

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge