Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Palmarisa Franchetti is active.

Publication


Featured researches published by Palmarisa Franchetti.


Pain | 2007

The antinociceptive effect of 2-chloro-2′-C-methyl-N6-cyclopentyladenosine (2′-Me-CCPA), a highly selective adenosine A1 receptor agonist, in the rat

Sabatino Maione; V. de Novellis; Loredana Cappellacci; Enza Palazzo; Daniela Vita; Livio Luongo; L. Stella; Palmarisa Franchetti; Ida Marabese; Francesco Rossi; Mario Grifantini

Abstract This study was undertaken in order to investigate the effect of 2‐chloro‐2′‐C‐methyl‐N6‐cyclopentyladenosine (2′‐Me‐CCPA), a potent and highly selective adenosine A1 receptor agonist, on nociceptive responses and on the ongoing or tail flick‐related changes of rostral ventromedial medulla (RVM) ON‐ and OFF‐cell activities. Systemic administrations of 2′‐Me‐CCPA (2.5–5 mg/kg, i.p.) reduced the nociceptive response in the plantar and formalin tests, in a way prevented by DPCPX (3 mg/kg, i.p.), a selective A1 receptor antagonist. Similarly, intra‐periaqueductal grey (PAG) 2′‐Me‐CCPA (0.5–1–2 nmol/rat) reduced pain behaviour in the plantar and formalin tests, in a way inhibited by DPCPX (0.5 nmol/rat). Moreover, when administered systemically (2.5–5 mg/kg, i.p.) or intra‐PAG (0.5–1 nmol/rat) 2′‐Me‐CCPA increased the tail flick latencies, delayed the tail flick‐related onset of the ON‐cell burst and decreased the duration of the OFF‐cell pause in a dose dependent manner. Furthermore, it decreased RVM ON‐cell and increased OFF‐cell ongoing activities. The in vivo electrophysiological effects were all prevented by DPCPX (0.5 nmol/rat). This study confirms the role of adenosine A1 receptors in modulating pain and suggests a critical involvement of these receptors within PAG–RVM descending pathway for the processing of pain.


Molecules | 2012

5'-Chloro-5'-deoxy-(±)-ENBA, a Potent and Selective Adenosine A1 Receptor Agonist, Alleviates Neuropathic Pain in Mice Through Functional Glial and Microglial Changes without Affecting Motor or Cardiovascular Functions

Livio Luongo; Riccardo Petrelli; Luisa Gatta; Catia Giordano; Francesca Guida; Patrizia Vita; Palmarisa Franchetti; Mario Grifantini; V. de Novellis; Loredana Cappellacci; Sabatino Maione

This study was undertaken in order to investigate the effect of chronic treatment with 5′-chloro-5′-deoxy-(±)-ENBA, a potent and highly selective agonist of human adenosine A1 receptor, on thermal hyperalgesia and mechanical allodynia in a mouse model of neuropathic pain, the Spared Nerve Injury (SNI) of the sciatic nerve. Chronic systemic administration of 5′-chloro-5′-deoxy-(±)-ENBA (0.5 mg/kg, i.p.) reduced both mechanical allodynia and thermal hyperalgesia 3 and 7 days post-SNI, in a way prevented by DPCPX (3 mg/kg, i.p.), a selective A1 adenosine receptor antagonist, without exerting any significant change on the motor coordination or arterial blood pressure. In addition, a single intraperitoneal injection of 5′-chloro-5′-deoxy-(±)-ENBA (0.5 mg/kg, i.p.) 7 days post-SNI also reduced both symptoms for at least two hours. SNI was associated with spinal changes in microglial activation ipsilaterally to the nerve injury. Activated, hypertrophic microglia were significantly reduced by 5′-chloro-5′-deoxy-(±)-ENBA chronic treatment. Our results demonstrated an involvement of adenosine A1 receptor in the amplified nociceptive thresholds and in spinal glial and microglial changes occurred in neuropathic pain, without affecting motor coordination or blood pressure. Our data suggest a possible use of adenosine A1 receptor agonist in neuropathic pain symptoms.


Journal of Medicinal Chemistry | 1988

Adenosine deaminase inhibitors. Synthesis and biological activities of deaza analogs of erythro-9-(2-hydroxy-3-nonyl)adenine

Gloria Cristalli; Palmarisa Franchetti; Mario Grifantini; Sauro Vittori; Giulio Lupidi; Francesca Riva; Teresa Bordoni; Cristina Geroni; M. Antonietta Verini

Two new deaza analogues of erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA, 1), 7-deaza-EHNA (6) and 1,3-dideaza-EHNA (11), were synthesized and evaluated for adenosine deaminase (ADA) inhibitory activity and compared with EHNA, 1-deaza-EHNA (2), and 3-deaza-EHNA (3). Substitution of a methine group for a nitrogen atom in the 7-position of the purine moiety of EHNA produces a dramatic drop in the inhibitory activity (Ki = 4 X 10(-4) M) whereas compounds 2 and 3 are still good inhibitors (Ki = 1.2 X 10(-7) M and 6.3 X 10(-9) M respectively). EHNA and its deaza analogues so far synthesized were also tested in vitro for their antiviral and antitumor activity in a range of cellular systems. EHNA and 1-deaza-EHNA are equiactive as inhibitors of human respiratory syncytial virus (HRSV) replication (MIC = 6.25 micrograms/mL) while the other compounds are inactive. On the other hand, all the examined compounds displayed an antitumor activity comparable to that of the reference compound 1-beta-D-arabinofuranosyladenine (ara-A), 7-deaza-EHNA being the most active of all. The results obtained showed that there is no correlation between adenosine deaminase inhibition and antiviral or antitumor activity in this series of compounds. 3-Deaza-EHNA, the most active inhibitor of ADA among the EHNA deaza analogues, greatly potentiates the antitumor activity of ara-A in vitro. In vivo activity was observed only when the two compounds were used in combination.


Antiviral Research | 2000

A new acyclic heterodinucleotide active against human immunodeficiency virus and herpes simplex virus.

Palmarisa Franchetti; Ghassan Abu Sheikha; Loredana Cappellacci; Stefano Marchetti; Mario Grifantini; Emanuela Balestra; Carlo Federico Perno; Umberto Benatti; Giorgio Brandi; Luigia Rossi; Mauro Magnani

The most common therapies against human herpes virus (HSV-1) and human immunodeficiency virus (HIV-1) infectivity are based on the administration of nucleoside analogues. Acyclovir (ACV) is the drug of choice against HSV-1 infection, while the acyclic nucleoside phosphonate analogue PMPA has shown marked anti-HIV activity in a phase I and II clinical studies. As monocyte-derived macrophages are assumed to be important as reservoirs of both HSV-1 and HIV-1 infection, new approaches able to inhibit replication of both viruses in macrophages should be welcome. ACVpPMPA, a new heterodinucleotide consisting of both an antiherpetic and an antiretroviral drug bound by a phosphate bridge, was synthesized and encapsulated into autologous erythrocytes modified to increase their phagocytosis by human macrophages. ACVpPMPA-loaded erythrocytes provided an effective in vitro protection against both HSV-1 and HIV-1 replication in human macrophages.


Recent Patents on Anti-cancer Drug Discovery | 2013

Novel Inhibitors of Inosine Monophosphate Dehydrogenase in Patent Literature of the Last Decade

Riccardo Petrelli; Patrizia Vita; Ilaria Torquati; Krzysztof Felczak; Daniel J. Wilson; Palmarisa Franchetti; Loredana Cappellacci

Inosine monophosphate dehydrogenase (IMPDH), an NAD-dependent enzyme that controls de novo synthesis of guanine nucleotides, has received considerable interest in recent years as an important target enzyme, not only for the discovery of anticancer drugs, but also for antiviral, antiparasitic, and immunosuppressive chemotherapy. The field of IMPDH inhibitor research is highly important for providing potential therapeutics against a validated target for disease intervention. This patent review examines the chemical structures and biological activities of recently reported IMPDH inhibitors. Patent databases SciFinder and Espacenet and Delphion were used to locate patent applications that were published between January 2002 and July 2012, claiming chemical structures for use as IMPDH inhibitors. From 2002 to 2012, around 47 primary patent applications have claimed IMPDH inhibitors, which we analyzed by target and applicant. The level of newly published patent applications covering IMPDH inhibitors remains high and a diverse range of scaffolds has been claimed.


Nucleosides, Nucleotides & Nucleic Acids | 2003

A New Tiazofurin Pronucleotide: Synthesis and Biological Evaluation of CycloSaligenyl-Tiazofurin Monophosphate

Loredana Cappellacci; G. Barboni; Palmarisa Franchetti; Claudia Martini; Hn Jayaram; Mario Grifantini

Abstract Synthesis and biological activities of cyclosaligenyl-tiazofurin monophosphate (CycloSal-TRMP), a new tiazofurin pronucleotide, are reported. CycloSal-TRMP proved to be active in vitro against human myelogenous leukemia K562 cell line and as A1 adenosine receptor agonist.


Nucleosides, Nucleotides & Nucleic Acids | 2007

Inhibition of HIV-1 Replication in Macrophages by Red Blood Cell-Mediated Delivery of a Heterodinucleotide of Lamivudine and Tenofovir

Palmarisa Franchetti; Loredana Cappellacci; Riccardo Petrelli; Patrizia Vita; Mario Grifantini; Luigia Rossi; Francesca Pierigè; Sonja Serafini; Mauro Magnani; Emanuela Balestra; Carlo Federico Perno

Homo- and heterodimers of nucleoside/nucleotide analogues as reverse transcriptase inhibitors are effective on HIV-1-infected human monocyte-derived macrophages (M/M) compared to the single drugs or their combination. Since the combined treatment of lamivudine (3TC) and tenofovir ((R)PMPA) has an antiretroviral efficacy and a synergic effect respect to separate drugs, the heterodinucleotide 3TCpPMPA was synthesized. A single administration of the dimer as free drug or 3TCpPMPA-loaded RBC selectively targeted to M/M was able to almost completely protect macrophages from “de novo” infection.


Antiviral Chemistry & Chemotherapy | 2001

Inhibition of HIV-1 Replication in Macrophages by Red Blood Cell-Mediated Delivery of a Heterodinucleotide of Azidothymidine and 9-(R)-2-(Phosphono Methoxypropyl)adenine

Palmarisa Franchetti; Luigia Rossi; Loredana Cappellacci; Pasqualini M; Mario Grifantini; Balestra E; Forbici F; Carlo-Federico Perno; Sonja Serafini; Mauro Magnani

Monocyte-derived macrophages (M/M) are considered important in vivo reservoirs for different kinds of viruses, including HIV. Hence, therapeutic strategies are urgently needed to protect these cells from virus infection or to control viral replication. In this paper, we report the synthesis, target delivery and in vitro efficacy of a new heterodinucleotide (AZTpPMPA), able to inhibit HIV-1 production in human macrophages. AZTpPMPA consists of two established anti-HIV drugs [zidovudine (AZT) and tenofovir (PMPA)] chemically coupled together by a phosphate bridge. This drug is not able to prevent p24 production when administered for 18 h to M/M experimentally infected with HIV-1 Bal (inhibition 27%), but can almost completely suppress virus production when given encapsulated into autologous erythrocytes (inhibition of p24 production 97%). AZTpPMPA is slowly converted to PMPA, AZT monophosphate and AZT (36 h half-life at 37°C) by cell-resident enzymes. Thus AZTpPMPA should be considered a new prodrug of AZT and PMPA that is able to provide stechiometric amounts of both nucleoside analogues to macrophage cells and to overcome the low phosphorylating activity of M/M for AZT and the modest permeability of PMPA.


European Journal of Medicinal Chemistry | 1988

Metal(II) complexes of 2,2′-bipyridyl-6-carbothioamide as anti-tumor and anti-fungal agents

Gloria Cristalli; Palmarisa Franchetti; Emiliano Nasini; Sauro Vittori; Mario Grifantini; Anna Barzi; Enrica Lepri; Sandro Ripa

Abstract Complexes of Fe(II), Co(II), Ni(II), Cu(II), Cd(II), Pd(II), Pt(II) and Zn(II) with the anti-tumor agent 2,2′-bipyridyl-6-carbothioamide ( bpyta, 1 ) were prepared and characterized. All these metal(II) complexes were screened for their cytostatic activities in vitro against murine P388 leukemia. The copper(II) complex 2f was found to be 12-fold more active than ligand 1. bpyta and its complexes were also evaluated for their anti-fungal activities. Some of the studied complexes displayed significant anti-fungal activity which, however, was lower than that of the parent ligand.


Bioorganic & Medicinal Chemistry | 2009

Selective inhibition of nicotinamide adenine dinucleotide kinases by dinucleoside disulfide mimics of nicotinamide adenine dinucleotide analogues.

Riccardo Petrelli; Yuk Y. Sham; Liqiang Chen; Krzysztof Felczak; Eric M. Bennett; Daniel J. Wilson; Courtney C. Aldrich; Jose S. Yu; Loredana Cappellacci; Palmarisa Franchetti; Mario Grifantini; Francesca Mazzola; Michele Di Stefano; Giulio Magni; Krzysztof W. Pankiewicz

Diadenosine disulfide (5) was reported to inhibit NAD kinase from Listeria monocytogenes and the crystal structure of the enzyme-inhibitor complex has been solved. We have synthesized tiazofurin adenosine disulfide (4) and the disulfide 5, and found that these compounds were moderate inhibitors of human NAD kinase (IC(50)=110 microM and IC(50)=87 microM, respectively) and Mycobacterium tuberculosis NAD kinase (IC(50)=80 microM and IC(50)=45 microM, respectively). We also found that NAD mimics with a short disulfide (-S-S-) moiety were able to bind in the folded (compact) conformation but not in the common extended conformation, which requires the presence of a longer pyrophosphate (-O-P-O-P-O-) linkage. Since majority of NAD-dependent enzymes bind NAD in the extended conformation, selective inhibition of NAD kinases by disulfide analogues has been observed. Introduction of bromine at the C8 of the adenine ring restricted the adenosine moiety of diadenosine disulfides to the syn conformation making it even more compact. The 8-bromoadenosine adenosine disulfide (14) and its di(8-bromoadenosine) analogue (15) were found to be the most potent inhibitors of human (IC(50)=6 microM) and mycobacterium NAD kinase (IC(50)=14-19 microM reported so far. None of the disulfide analogues showed inhibition of lactate-, and inosine monophosphate-dehydrogenase (IMPDH), enzymes that bind NAD in the extended conformation.

Collaboration


Dive into the Palmarisa Franchetti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. La Colla

University of Cagliari

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge