Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Palsamy Periyasamy is active.

Publication


Featured researches published by Palsamy Periyasamy.


Autophagy | 2016

Interplay of endoplasmic reticulum stress and autophagy in neurodegenerative disorders

Yu Cai; Jyothi Arikkath; Lu Yang; Ming Lei Guo; Palsamy Periyasamy; Shilpa Buch

ABSTRACT The common underlying feature of most neurodegenerative diseases such as Alzheimer disease (AD), prion diseases, Parkinson disease (PD), and amyotrophic lateral sclerosis (ALS) involves accumulation of misfolded proteins leading to initiation of endoplasmic reticulum (ER) stress and stimulation of the unfolded protein response (UPR). Additionally, ER stress more recently has been implicated in the pathogenesis of HIV-associated neurocognitive disorders (HAND). Autophagy plays an essential role in the clearance of aggregated toxic proteins and degradation of the damaged organelles. There is evidence that autophagy ameliorates ER stress by eliminating accumulated misfolded proteins. Both abnormal UPR and impaired autophagy have been implicated as a causative mechanism in the development of various neurodegenerative diseases. This review highlights recent advances in the field on the role of ER stress and autophagy in AD, prion diseases, PD, ALS and HAND with the involvement of key signaling pathways in these processes and implications for future development of therapeutic strategies.


Autophagy | 2015

Cocaine-mediated microglial activation involves the ER stress-autophagy axis.

Ming Lei Guo; Ke Liao; Palsamy Periyasamy; Lu Yang; Yu Cai; Shannon Callen; Shilpa Buch

Cocaine abuse leads to neuroinflammation, which, in turn, contributes to the pathogenesis of neurodegeneration associated with advanced HIV-1 infection. Autophagy plays important roles in both innate and adaptive immune responses. However, the possible functional link between cocaine and autophagy has not been explored before. Herein, we demonstrate that cocaine exposure induced autophagy in both BV-2 and primary rat microglial cells as demonstrated by a dose- and time-dependent induction of autophagy-signature proteins such as BECN1/Beclin 1, ATG5, and MAP1LC3B. These findings were validated wherein cocaine treatment of BV-2 cells resulted in increased formation of puncta in cells expressing either endogenous MAP1LC3B or overexpressing GFP-MAP1LC3B. Specificity of cocaine-induced autophagy was confirmed by treating cells with inhibitors of autophagy (3-MA and wortmannin). Intriguingly, cocaine-mediated induction of autophagy involved upstream activation of 2 ER stress pathways (EIF2AK3- and ERN1-dependent), as evidenced by the ability of the ER stress inhibitor salubrinal to ameliorate cocaine-induced autophagy. In vivo validation of these findings demonstrated increased expression of BECN1, ATG5, and MAP1LC3B-II proteins in cocaine-treated mouse brains compared to untreated animals. Increased autophagy contributes to cocaine-mediated activation of microglia since pretreatment of cells with wortmannin resulted in decreased expression and release of inflammatory factors (TNF, IL1B, IL6, and CCL2) in microglial cells. Taken together, our findings suggest that cocaine exposure results in induction of autophagy that is closely linked with neuroinflammation. Targeting autophagic proteins could thus be considered as a therapeutic strategy for the treatment of cocaine-related neuroinflammation diseases.


Autophagy | 2016

Cocaine induces astrocytosis through ER stress-mediated activation of autophagy

Palsamy Periyasamy; Ming Lei Guo; Shilpa Buch

ABSTRACT Cocaine is known to induce inflammation, thereby contributing in part, to the pathogenesis of neurodegeneration. A recent study from our lab has revealed a link between macroautophagy/autophagy and microglial activation. The current study was aimed at investigating whether cocaine could also mediate activation of astrocytes and, whether this process involved induction of autophagy. Our findings demonstrated that cocaine mediated the activation of astrocytes by altering the levels of autophagy markers, such as BECN1, ATG5, MAP1LC3B-II, and SQSTM1 in both human A172 astrocytoma cells and primary human astrocytes. Furthermore, cocaine treatment resulted in increased formation of endogenous MAP1LC3B puncta in human astrocytes. Additionally, astrocytes transfected with the GFP-MAP1LC3B plasmid also demonstrated cocaine-mediated upregulation of the green fluorescent MAP1LC3B puncta. Cocaine-mediated induction of autophagy involved upstream activation of ER stress proteins such as EIF2AK3, ERN1, ATF6 since blockage of autophagy using either pharmacological or gene-silencing approaches, had no effect on cocaine-mediated induction of ER stress. Using both pharmacological and gene-silencing approaches to block either ER stress or autophagy, our findings demonstrated that cocaine-induced activation of astrocytes (measured by increased levels of GFAP) involved sequential activation of ER stress and autophagy. Cocaine-mediated-increased upregulation of GFAP correlated with increased expression of proinflammatory mediators such as TNF, IL1B, and IL6. In conclusion, these findings reveal an association between ER stress-mediated autophagy and astrogliosis in cocaine-treated astrocytes. Intervention of ER stress and/or autophagy signaling would thus be promising therapeutic targets for abrogating cocaine-mediated neuroinflammation.


The Journal of Neuroscience | 2017

HIV-1 Tat primes and activates microglial NLRP3 inflammasome-mediated neuroinflammation

Ernest T. Chivero; Ming Lei Guo; Palsamy Periyasamy; Ke Liao; Shannon Callen; Shilpa Buch

Neuroinflammation associated with HIV-1 infection is a problem affecting ∼50% of HIV-infected individuals. NLR family pyrin domain containing 3 (NLRP3) inflammasome has been implicated in HIV-induced microglial activation, but the mechanism(s) remain unclear. Because HIV-1 Transactivator of Transcription (Tat) protein continues to be present despite antiretroviral therapy and activates NF-kB, we hypothesized that Tat could prime the NLRP3 inflammasome. We found a dose- and time-dependent induction of NLRP3 expression in microglia exposed to Tat compared with control. Tat exposure also time-dependently increased the mature caspase-1 and IL-1β levels and enhanced the IL-1β secretion. These in vitro findings were validated in archival brain tissues from Simian Immunodeficiency Virus (SIV)-infected and uninfected rhesus macaques. Further validation of NLRP3 priming in vivo involved administration of lipopolysaccharide (LPS) to HIV transgenic (Tg) rats followed by assessment of IL-1β mRNA expression and inflammasome activation (ASC oligomers and mature IL-1β). Intriguingly, LPS potentiated upregulation of IL-1β mRNA and inflammasome activation in HIV-Tg rats compared with the wild-type controls. Interestingly, we found an inverse relationship in the expression of NLRP3 and its negative regulator, miR-223, suggesting a miR-223-mediated mechanism for Tat-induced NLRP3 priming. Furthermore, blockade of NLRP3 resulted in decreased IL-1β secretion. Collectively, these findings suggest a novel role of Tat in priming and activating the NLRP3 inflammasome. Therefore, NLRP3 can be envisioned as a therapeutic target for ameliorating Tat-mediated neuroinflammation. SIGNIFICANCE STATEMENT Despite successful suppression of viremia with increased longevity in the era of combined antiretroviral therapy, chronic inflammation with underlying neurocognitive impairment continues to afflict almost 50% of infected individuals. Viral, bacterial, and cellular products have all been implicated in promoting the chronic inflammation found in these individuals. Understanding the molecular mechanism(s) by which viral proteins such as HIV-1 Transactivator of Transcription (Tat) protein can activate microglia is thus of paramount importance. Herein, we demonstrate a novel role of Tat in priming and activating NLR family pyrin domain containing 3 (NLRP3) inflammasomes in microglial cells and in HIV-Tg rats administered lipopolysaccharide. Targeting NLRP3 inflammasome pathway mediators could thus be developed as therapeutic interventions to alleviate or prevent neuroinflammation and subsequent cognitive impairment in HIV-positive patients.


Epigenetics | 2016

Cocaine-mediated downregulation of microglial miR-124 expression involves promoter DNA methylation

Ming Lei Guo; Palsamy Periyasamy; Ke Liao; Yeon Hee Kook; Fang Niu; Shannon Callen; Shilpa Buch

ABSTRACT Neuroinflammation plays a critical role in the development of reward-related behavior in cocaine self-administration rodents. Cocaine, one of most commonly abused drugs, has been shown to activate microglia both in vitro and in vivo. Detailed molecular mechanisms underlying cocaine-mediated microglial activation remain poorly understood. microRNAs (miRs) belonging to a class of small noncoding RNA superfamily have been shown to modulate the activation status of microglia. miR-124, one of the microglia-enriched miRs, functions as an anti-inflammatory regulator that maintains microglia in a quiescent state. To date, the possible effects of cocaine on microglial miR-124 levels and the associated underlying mechanisms have not been explored. In the current study, we demonstrated that cocaine exposure decreased miR-124 levels in both BV-2 cells and rat primary microglia. These findings were further validated in vivo, wherein we demonstrated decreased abundance of miR-124 in purified microglia isolated from cocaine-administered mice brains compared with cells from saline administered animals. Molecular mechanisms underlying these effects involved cocaine-mediated increased mRNA and protein expression of DNMTs in microglia. Consistently, cocaine substantially increased promoter DNA methylation levels of miR-124 precursors (pri-miR-124-1 and −2), but not that of pri-miR-124-3, both in vitro and in vivo. In summary, our findings demonstrated that cocaine exposure increased DNA methylation of miR-124 promoter resulting into its downregulation, which, in turn, led to microglial activation. Our results thus implicate that epigenetic modulation of miR-124 could be considered as a potential therapeutic approach to ameliorate microglial activation and, possibly, the development of cocaine addiction.


Progress in Retinal and Eye Research | 2017

Age-related cataracts: Role of unfolded protein response, Ca2+ mobilization, epigenetic DNA modifications, and loss of Nrf2/Keap1 dependent cytoprotection

Palsamy Periyasamy; Toshimichi Shinohara

ABSTRACT Age‐related cataracts are closely associated with lens chronological aging, oxidation, calcium imbalance, hydration and crystallin modifications. Accumulating evidence indicates that misfolded proteins are generated in the endoplasmic reticulum (ER) by most cataractogenic stresses. To eliminate misfolded proteins from cells before they can induce senescence, the cells activate a clean‐up machinery called the ER stress/unfolded protein response (UPR). The UPR also activates the nuclear factor‐erythroid‐2‐related factor 2 (Nrf2), a central transcriptional factor for cytoprotection against stress. Nrf2 activates nearly 600 cytoprotective target genes. However, if ER stress reaches critically high levels, the UPR activates destructive outputs to trigger programmed cell death. The UPR activates mobilization of ER‐Ca2+ to the cytoplasm and results in activation of Ca2+‐dependent proteases to cleave various enzymes and proteins which cause the loss of normal lens function. The UPR also enhances the overproduction of reactive oxygen species (ROS), which damage lens constituents and induce failure of the Nrf2 dependent cytoprotection. Kelch‐like ECH‐associated protein 1 (Keap1) is an oxygen sensor protein and regulates the levels of Nrf2 by the proteasomal degradation. A significant loss of DNA methylation in diabetic cataracts was found in the Keap1 promoter, which overexpresses the Keap1 protein. Overexpressed Keap1 significantly decreases the levels of Nrf2. Lower levels of Nrf2 induces loss of the redox balance toward to oxidative stress thereby leading to failure of lens cytoprotection. Here, this review summarizes the overall view of ER stress, increases in Ca2+ levels, protein cleavage, and loss of the well‐established stress protection in somatic lens cells.


The Journal of Neuroscience | 2018

Epigenetic promoter DNA methylation of miR-124 promotes HIV-1 Tat-mediated microglial activation via MECP2-STAT3 axis

Palsamy Periyasamy; Annadurai Thangaraj; Ming Lei Guo; Guoku Hu; Shannon Callen; Shilpa Buch

The present study demonstrates HIV-1 Tat-mediated epigenetic downregulation of microglial miR-124 and its association with microglial activation. Exposure of mouse primary microglia isolated from newborn pups of either sex to HIV-1 Tat resulted in decreased expression of primary miR-124-1, primary miR-124-2 as well as the mature miR-124. In parallel, HIV-1 Tat exposure to mouse primary microglial cells resulted in increased expression of DNA methylation enzymes, such as DNMT1, DNMT3A, and DNMT3B, which were also accompanied by increased global DNA methylation. Bisulfite-converted genomic DNA sequencing in the HIV-1 Tat-exposed mouse primary microglial cells further confirmed increased DNA methylation of the primary miR-124-1 and primary miR-124-2 promoters. Bioinformatic analyses identified MECP2 as a novel 3′-UTR target of miR-124. This was further validated in mouse primary microglial cells wherein HIV-1 Tat-mediated downregulation of miR-124 resulted in increased expression of MECP2, leading in turn to further repression of miR-124 via the feedback loop. In addition to MECP2, miR-124 also modulated the levels of STAT3 through its binding to the 3′-UTR, leading to microglial activation. Luciferase assays and Ago2 immunoprecipitation determined the direct binding between miR-124 and 3′-UTR of both MECP2 and STAT3. Gene silencing of MECP2 and DNMT1 and overexpression of miR-124 blocked HIV-1 Tat-mediated downregulation of miR-124 and microglial activation. In vitro findings were also confirmed in the basal ganglia of SIV-infected rhesus macaques (both sexes). In summary, our findings demonstrate a novel mechanism of HIV-1 Tat-mediated activation of microglia via downregulation of miR-124, leading ultimately to increased MECP2 and STAT3 signaling. SIGNIFICANCE STATEMENT Despite the effectiveness of combination antiretroviral therapy in controlling viremia, the CNS continues to harbor viral reservoirs. The persistence of low-level virus replication leads to the accumulation of early viral proteins, including HIV-1 Tat protein. Understanding the epigenetic/molecular mechanism(s) by which viral proteins, such as HIV-1 Tat, can activate microglia is thus of paramount importance. This study demonstrated that HIV-1 Tat-mediated DNA methylation of the miR-124 promoter leads to its downregulation with a concomitant upregulation of the MECP2-STAT3-IL6, resulting in microglial activation. These findings reveal an unexplored epigenetic/molecular mechanism(s) underlying HIV-1 Tat-mediated microglial activation, thereby providing a potential target for the development of therapeutics aimed at ameliorating microglial activation and neuroinflammation in the context of HIV-1 infection.


Autophagy | 2018

HIV-1 TAT-mediated microglial activation: Role of mitochondrial dysfunction and defective mitophagy

Annadurai Thangaraj; Palsamy Periyasamy; Ke Liao; Venkata Sunil Bendi; Shannon Callen; Gurudutt Pendyala; Shilpa Buch

ABSTRACT While the advent of combination antiretroviral therapy (cART) has dramatically increased the life expectancy of HIV-1 infected individuals, paradoxically, however, the prevalence of HIV-1-associated neurocognitive disorders is on the rise. Based on the premise that the cytotoxic HIV-1 protein, transactivator of transcription (TAT), a known activator of glial cells that is found to persist in the central nervous system (CNS) despite cART, we sought to explore the role of defective mitophagy in HIV-1 TAT-mediated microglial activation. Our results demonstrated that exposure of mouse primary microglia to HIV-1 TAT resulted in cellular activation involving altered mitochondrial membrane potential that was accompanied by accumulation of damaged mitochondria. Exposure of microglia to HIV-1 TAT resulted in increased expression of mitophagy signaling proteins, such as PINK1, PRKN, and DNM1L, with a concomitant increase in the formation of autophagosomes, as evidenced by increased expression of BECN1 and MAP1LC3B-II. Intriguingly, exposure of cells to HIV-1 TAT also resulted in increased expression of SQSTM1, signifying thereby a possible blockade of the mitophagy flux, leading, in turn, to the accumulation of mitophagosomes. Interestingly, HIV-1 TAT-mediated activation of microglia was associated with decreased rate of extracellular acidification and mitochondrial oxygen consumption and increased expression of proinflammatory cytokines, such as Tnf, Il1b, and Il6. HIV-1 TAT-mediated defective mitophagy leading to microglial activation was further validated in vivo in the brains of HIV-1 transgenic rats. In conclusion, HIV-1 TAT activates microglia by increasing mitochondrial damage via defective mitophagy. Abbreviations: 3-MA: 3-methyladenine; Δψm: mitochondrial membrane potential; ACTB: actin, beta; AIF1: allograft inflammatory factor 1; ATP: adenosine triphosphate; BAF: bafilomycin A1; BECN1: beclin 1, autophagy related; cART: combined antiretroviral therapy; CNS: central nervous system; DNM1L: dynamin 1 like; DMEM: Dulbecco modified Eagle medium; DAPI: 4,6-diamidino-2-phenylindole‎; ECAR: extracellular acidification rate; FBS: fetal bovine serum; FCCP: trifluoromethoxy carbonylcyanide phenylhydrazone; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; HAND: HIV-1-associated neurocognitive disorders; HIV-1 TAT: human immunodeficiency virus-1 transactivator of transcription; IL1B: interleukin 1, beta; IL6: interleukin 6; ITGAM: integrin subunit alpha M; MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; mPMs: mouse primary microglial cells; MRC: maximal respiratory capacity; mt-CO1: mitochondrially encoded cytochrome c oxidase; mt-ND6: mitochondrially encoded NADH:ubiquinone oxidoreductase core subunit 6; NFKB1: nuclear factor kappa B subunit 1; NLRP3: NLR family pyrin domain containing 3; OCR: oxygen consumption rate; PBS: phosphate-buffered saline; PINK1: PTEN induced putative kinase 1; PRKN: parkin RBR E3 ubiquitin protein ligase; ROS: reactive oxygen species; siRNA: small interfering RNA; SQSTM1: sequestosome 1; TNF: tumor necrosis factor


Journal of NeuroVirology | 2015

Chronic SIV and morphine treatment increases heat shock protein 5 expression at the synapse

Gurudutt Pendyala; Palsamy Periyasamy; Shannon Callen; Howard S. Fox; Steven J. Lisco; Shilpa Buch

The abuse of opiates such as morphine in synergy with HIV infection accelerates neurocognitive impairments and neuropathology in the CNS of HIV-infected subjects, collectively referred to as HAND. To identify potential pathogenic markers associated with HIV and morphine in perturbing the synaptic architecture, we performed quantitative mass spectrometry proteomics on purified synaptosomes isolated from the caudate of two groups of rhesus macaques chronically infected with SIV differing by one regimen—morphine treatment. The upregulation of heat shock 70-kDa protein 5 in the SIV + morphine group points to increased cellular stress during SIV/morphine interaction thus leading to CNS dysfunction.


Molecular Aspects of Medicine | 2018

PDGF/PDGFR axis in the neural systems

Susmita Sil; Palsamy Periyasamy; Annadurai Thangaraj; Ernest T. Chivero; Shilpa Buch

Platelet-derived growth factors (PDGFs) and their receptors (PDGFRs) are expressed in several cell types including the brain cells such as neuronal progenitors, neurons, astrocytes, and oligodendrocytes. Emerging evidence shows that PDGF-mediated signaling regulates diverse functions in the central nervous system (CNS) such as neurogenesis, cell survival, synaptogenesis, modulation of ligand-gated ion channels, and development of specific types of neurons. Interestingly, PDGF/PDFGR signaling can elicit paradoxical roles in the CNS, depending on the cell type and the activation stimuli and is implicated in the pathogenesis of various neurodegenerative diseases. This review summarizes the role of PDGFs/PDGFRs in several neurodegenerative diseases such as Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis, brain cancer, cerebral ischemia, HIV-1 and drug abuse. Understanding PDGF/PDGFR signaling may lead to novel approaches for the future development of therapeutic strategies for combating CNS pathologies.

Collaboration


Dive into the Palsamy Periyasamy's collaboration.

Top Co-Authors

Avatar

Shilpa Buch

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ming Lei Guo

University of Missouri–Kansas City

View shared research outputs
Top Co-Authors

Avatar

Shannon Callen

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ke Liao

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Toshimichi Shinohara

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Elanchezhian Rajan

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Annadurai Thangaraj

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Fang Niu

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Susmita Sil

University of Nebraska Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge