Pamela A. Banta Lavenex
University of Fribourg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pamela A. Banta Lavenex.
European Journal of Neuroscience | 2010
Adeline Jabès; Pamela A. Banta Lavenex; David G. Amaral; Pierre Lavenex
The dentate gyrus is one of only two regions of the mammalian brain where substantial neurogenesis occurs postnatally. However, detailed quantitative information about the postnatal structural maturation of the primate dentate gyrus is meager. We performed design‐based, stereological studies of neuron number and size, and volume of the dentate gyrus layers in rhesus macaque monkeys (Macaca mulatta) of different postnatal ages. We found that about 40% of the total number of granule cells observed in mature 5–10‐year‐old macaque monkeys are added to the granule cell layer postnatally; 25% of these neurons are added within the first three postnatal months. Accordingly, cell proliferation and neurogenesis within the dentate gyrus peak within the first 3 months after birth and remain at an intermediate level between 3 months and at least 1 year of age. Although granule cell bodies undergo their largest increase in size during the first year of life, cell size and the volume of the three layers of the dentate gyrus (i.e. the molecular, granule cell and polymorphic layers) continue to increase beyond 1 year of age. Moreover, the different layers of the dentate gyrus exhibit distinct volumetric changes during postnatal development. Finally, we observe significant levels of cell proliferation, neurogenesis and cell death in the context of an overall stable number of granule cells in mature 5–10‐year‐old monkeys. These data identify an extended developmental period during which neurogenesis might be modulated to significantly impact the structure and function of the dentate gyrus in adulthood.
Developmental Neuroscience | 2007
Pierre Lavenex; Pamela A. Banta Lavenex; David G. Amaral
The hippocampal formation is a multicomponent region of the medial temporal lobe preferentially involved in declarative and relational memory processing. Behavioral studies have suggested a protracted functional maturation of these structures in primates, and postnatal developmental abnormalities in the hippocampal formation are thought to contribute to neurodevelopmental disorders, such as autism, schizophrenia, epilepsy and Down syndrome. Despite all that we know about the functional organization of the adult hippocampal formation, notably absent is a systematic study of its postnatal maturation in primates. In this article, we review current knowledge of the structural development of the primate hippocampal formation and present new data on its postnatal neuroanatomical development. We summarize what is known about the neurobiological processes, such as the addition of new neurons, the establishment and elaboration of connectivity, and the neurochemical changes, that underlie the structural development and functional maturation of the primate hippocampal formation. We conclude that there is yet insufficient information to identify distinct developmental windows during which different hippocampal regions undergo specific maturational processes. For this reason, it is currently impossible to determine the ages at which specific hippocampal circuits become structurally mature and potentially capable of supporting defined, age-specific functional processes. Together with work in rodents, systematic studies of the structural development and functional maturation of the monkey hippocampal formation will be necessary to gain insight not only into the types of information processing that it subserves, but also into the specific maturational processes that might be affected in human neurodevelopmental disorders.
Hippocampus | 2009
Pamela A. Banta Lavenex; Pierre Lavenex
Studies of the role of the monkey hippocampus in spatial learning and memory, however few, have reliably produced inconsistent results. Whereas the role of the hippocampus in spatial learning and memory has been clearly established in rodents, studies in nonhuman primates have made a variety of claims that range from the involvement of the hippocampus in spatial memory only at relatively longer memory delays, to no role for the hippocampus in spatial memory at all. In contrast, we have shown that selective damage restricted to the hippocampus (CA regions) prevents the learning or use of allocentric, spatial relational representations of the environment in freely behaving adult monkeys tested in an open‐field arena. In this commentary, we discuss a unifying framework that explains these apparently discrepant results regarding the role of the monkey hippocampus in spatial learning and memory. We describe clear and strict criteria to interpret the findings from previous studies and guide future investigations of spatial memory in monkeys. Specifically, we affirm that, as in the rodent, the primate hippocampus is critical for spatial relational learning and memory, and in a time‐independent manner. We describe how claims to the contrary are the result of experimental designs that fail to recognize, and control for, egocentric (hippocampus‐independent) and allocentric (hippocampus‐dependent) spatial frames of reference. Finally, we conclude that the available data demonstrate unequivocally that the central role of the hippocampus in allocentric, spatial relational learning and memory is conserved among vertebrates, including nonhuman primates.
The Journal of Comparative Neurology | 2011
Loïc J. Chareyron; Pamela A. Banta Lavenex; David G. Amaral; Pierre Lavenex
The amygdala is part of a neural network that contributes to the regulation of emotional behaviors. Rodents, especially rats, are used extensively as model organisms to decipher the functions of specific amygdala nuclei, in particular in relation to fear and emotional learning. Analysis of the role of the nonhuman primate amygdala in these functions has lagged work in the rodent but provides evidence for conservation of basic functions across species. Here we provide quantitative information regarding the morphological characteristics of the main amygdala nuclei in rats and monkeys, including neuron and glial cell numbers, neuronal soma size, and individual nuclei volumes. The volumes of the lateral, basal, and accessory basal nuclei were, respectively, 32, 39, and 39 times larger in monkeys than in rats. In contrast, the central and medial nuclei were only 8 and 4 times larger in monkeys than in rats. The numbers of neurons in the lateral, basal, and accessory basal nuclei were 14, 11, and 16 times greater in monkeys than in rats, whereas the numbers of neurons in the central and medial nuclei were only 2.3 and 1.5 times greater in monkeys than in rats. Neuron density was between 2.4 and 3.7 times lower in monkeys than in rats, whereas glial density was only between 1.1 and 1.7 times lower in monkeys than in rats. We compare our data in rats and monkeys with those previously published in humans and discuss the theoretical and functional implications that derive from our quantitative structural findings. J. Comp. Neurol. 519:3218–3239, 2011.
The Journal of Comparative Neurology | 2009
Pierre Lavenex; Pamela A. Banta Lavenex; Jeffrey L. Bennett; David G. Amaral
Comparative studies of the structural organization of the brain are fundamental to our understanding of human brain function. However, whereas brains of experimental animals are fixed by perfusion of a fixative through the vasculature, human or ape brains are fixed by immersion after varying postmortem intervals. Although differential treatments might affect the fundamental characteristics of the tissue, this question has not been evaluated empirically in primate brains. Monkey brains were either perfused or acquired after varying postmortem intervals before immersion‐fixation in 4% paraformaldehyde. We found that the fixation method affected the neuroanatomical characteristics of the monkey hippocampal formation. Soma size was smaller in Nissl‐stained, immersion‐fixed tissue, although overall brain volume was larger as compared to perfusion‐fixed tissue. Nonphosphorylated high‐molecular‐weight neurofilament immunoreactivity was lower in CA3 pyramidal neurons, dentate mossy cells, and the entorhinal cortex, whereas it was higher in the mossy fiber pathway in immersion‐fixed tissue. Serotonin‐immunoreactive fibers were well stained in perfused tissue but were undetectable in immersion‐fixed tissue. Although regional immunoreactivity patterns for calcium‐binding proteins were not affected, intracellular staining degraded with increasing postmortem intervals. Somatostatin‐immunoreactive clusters of large axonal varicosities, previously reported only in humans, were observed in immersion‐fixed monkey tissue. In addition, calretinin‐immunoreactive multipolar neurons, previously observed only in rodents, were found in the rostral dentate gyrus in both perfused and immersion‐fixed brains. In conclusion, comparative studies of the brain must evaluate the effects of fixation on the staining pattern of each marker in every structure of interest before drawing conclusions about species differences. J. Comp. Neurol. 512:27–51, 2009.
The Journal of Comparative Neurology | 2012
Loïc J. Chareyron; Pamela A. Banta Lavenex; Pierre Lavenex
The amygdala is the central component of a functional brain system regulating fear and emotional behaviors. Studies of the ontogeny of fear behaviors reveal the emergence of distinct fear responses at different postnatal ages. Here, we performed a stereological analysis of the rat amygdala to characterize the cellular changes underlying its normal structural development. Distinct amygdala nuclei exhibited different patterns of postnatal development, which were largely similar to those we have previously shown in monkeys. The combined volume of the lateral, basal, and accessory basal nuclei increased by 113% from 1 to 3 weeks of age and by an additional 33% by 7 months of age. The volume of the central nucleus increased only 37% from 1 to 2 weeks of age and 38% from 2 weeks to 7 months. At 1 week of age, the medial nucleus was 77% of the 7‐month‐olds volume and exhibited a constant, marginal increase until 7 months. Neuron number did not differ in the amygdala from 1 week to 7 months of age. In contrast, astrocyte number decreased from 3 weeks to 2 months of age in the whole amygdala. Oligodendrocyte number increased in all amygdala nuclei from 3 weeks to 7 months of age. Our findings revealed that distinct amygdala nuclei exhibit different developmental profiles and that the rat amygdala is not fully mature for an extended period postnatally. We identified different periods of postnatal development of distinct amygdala nuclei and cellular components, which are concomitant with the ontogeny of different fear and emotional behaviors. J. Comp. Neurol. 520:3745–3763, 2012.
The Journal of Comparative Neurology | 2012
Loïc J. Chareyron; Pamela A. Banta Lavenex; David G. Amaral; Pierre Lavenex
Abnormal development of the amygdala has been linked to several neurodevelopmental disorders, including schizophrenia and autism. However, the postnatal development of the amygdala is not easily explored at the cellular level in humans. Here we performed a stereological analysis of the macaque monkey amygdala in order to characterize the cellular changes underlying its normal structural development in primates. The lateral, basal, and accessory basal nuclei exhibited the same developmental pattern, with a large increase in volume between birth and 3 months of age, followed by slower growth continuing beyond 1 year of age. In contrast, the medial nucleus was near adult size at birth. At birth, the volume of the central nucleus was half of the adult value; this nucleus exhibited significant growth even after 1 year of age. Neither neuronal soma size, nor neuron or astrocyte numbers changed during postnatal development. In contrast, oligodendrocyte numbers increased substantially, in parallel with an increase in amygdala volume, after 3 months of age. At birth, the paralaminar nucleus contained a large pool of immature neurons that gradually developed into mature neurons, leading to a late increase in the volume of this nucleus. Our findings revealed that distinct amygdala nuclei exhibit different developmental profiles and that the amygdala is not fully mature for some time postnatally. We identified different periods during which pathogenic factors might lead to the abnormal development of distinct amygdala circuits, which may contribute to different human neurodevelopmental disorders associated with alterations of amygdala structure and functions. J. Comp. Neurol. 520:1965–1984, 2012.
Behavioural Brain Research | 2010
Pamela A. Banta Lavenex; Pierre Lavenex
This study assesses gender differences in spatial and non-spatial relational learning and memory in adult humans behaving freely in a real-world, open-field environment. In Experiment 1, we tested the use of proximal landmarks as conditional cues allowing subjects to predict the location of rewards hidden in one of two sets of three distinct locations. Subjects were tested in two different conditions: (1) when local visual cues marked the potentially-rewarded locations, and (2) when no local visual cues marked the potentially-rewarded locations. We found that only 17 of 20 adults (8 males, 9 females) used the proximal landmarks to predict the locations of the rewards. Although females exhibited higher exploratory behavior at the beginning of testing, males and females discriminated the potentially-rewarded locations similarly when local visual cues were present. Interestingly, when the spatial and local information conflicted in predicting the reward locations, males considered both spatial and local information, whereas females ignored the spatial information. However, in the absence of local visual cues females discriminated the potentially-rewarded locations as well as males. In Experiment 2, subjects (9 males, 9 females) were tested with three asymmetrically-arranged rewarded locations, which were marked by local cues on alternate trials. Again, females discriminated the rewarded locations as well as males in the presence or absence of local cues. In sum, although particular aspects of task performance might differ between genders, we found no evidence that women have poorer allocentric spatial relational learning and memory abilities than men in a real-world, open-field environment.
PLOS ONE | 2012
Grégoire Favre; Pamela A. Banta Lavenex; Pierre Lavenex
Regulation of gene expression in the postnatally developing hippocampus might contribute to the emergence of selective memory function. However, the mechanisms that underlie the co-regulation of expression of hundreds of genes in different cell types at specific ages in distinct hippocampal regions have yet to be elucidated. By performing genome-wide microarray analyses of gene expression in distinct regions of the monkey hippocampal formation during early postnatal development, we identified one particular group of genes exhibiting a down-regulation of expression, between birth and six months of age in CA1 and after one year of age in CA3, to reach expression levels observed at 6–12 years of age. Bioinformatics analyses using NCBI, miRBase, TargetScan, microRNA.org and Affymetrix tools identified a number of miRNAs capable of regulating the expression of these genes simultaneously in different cell types, i.e., in neurons, astrocytes and oligodendrocytes. Interestingly, sixty-five percent of these miRNAs are conserved across species, from rodents to humans; whereas thirty-five percent are specific to primates, including humans. In addition, we found that some genes exhibiting greater down-regulation of their expression were the predicted targets of a greater number of these miRNAs. In sum, miRNAs may play a fundamental role in the co-regulation of gene expression in different cell types. This mechanism is partially conserved across species, and may thus contribute to the similarity of basic hippocampal characteristics across mammals. This mechanism also exhibits a phylogenetic diversity that may contribute to more subtle species differences in hippocampal structure and function observed at the cellular level.
The Journal of Comparative Neurology | 2011
Adeline Jabès; Pamela A. Banta Lavenex; David G. Amaral; Pierre Lavenex