Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pamela Dann is active.

Publication


Featured researches published by Pamela Dann.


Journal of Bone and Mineral Research | 2005

TOPGAL mice show that the canonical Wnt signaling pathway is active during bone development and growth and is activated by mechanical loading in vitro.

Julie R Hens; Kimberly Wilson; Pamela Dann; Xuesong Chen; Mark C. Horowitz; John J. Wysolmerski

We identified cellular targets of canonical Wnt signaling within the skeleton, which included chondrocytes, osteoblasts, and osteocytes in growing bone, but only osteocytes and chondrocytes in the mature skeleton. Mechanical deformation induced Wnt signaling in osteoblasts in vitro.


Journal of Clinical Investigation | 2004

The calcium-sensing receptor regulates mammary gland parathyroid hormone–related protein production and calcium transport

Joshua VanHouten; Pamela Dann; Grace McGeoch; Edward M. Brown; Karen J. Krapcho; Margaret C. Neville; John J. Wysolmerski

The transfer of calcium from mother to milk during lactation is poorly understood. In this report, we demonstrate that parathyroid hormone-related protein (PTHrP) production and calcium transport in mammary epithelial cells are regulated by extracellular calcium acting through the calcium-sensing receptor (CaR). The CaR becomes expressed on mammary epithelial cells at the transition from pregnancy to lactation. Increasing concentrations of calcium, neomycin, and a calcimimetic compound suppress PTHrP secretion by mammary epithelial cells in vitro, whereas in vivo, systemic hypocalcemia increases PTHrP production, an effect that can be prevented by treatment with a calcimimetic. Hypocalcemia also reduces overall milk production and calcium content, while increasing milk osmolality and protein concentrations. The changes in milk calcium content, milk osmolality, and milk protein concentration were mitigated by calcimimetic infusions. Finally, in a three-dimensional culture system that recapitulates the lactating alveolus, activation of the basolateral CaR increases transcellular calcium transport independent of its effect on PTHrP. We conclude that the lactating mammary gland can sense calcium and adjusts its secretion of calcium, PTHrP, and perhaps water in response to changes in extracellular calcium concentration. We believe this defines a homeostatic system that helps to match milk production to the availability of calcium.


Journal of Biological Chemistry | 1996

Overexpression of Parathyroid Hormone-related Protein in the Pancreatic Islets of Transgenic Mice Causes Islet Hyperplasia, Hyperinsulinemia, and Hypoglycemia

Rupangi C. Vasavada; Christi Cavaliere; A. Joseph D'Ercole; Pamela Dann; William J. Burtis; Alex L. Madlener; Kathleen C. Zawalich; Walter S. Zawalich; William M. Philbrick; Andrew F. Stewart

Parathyroid hormone-related protein (PTHrP) is produced by the pancreatic islet. It also has receptors on islet cells, suggesting that it may serve a paracrine or autocrine role within the islet. We have developed transgenic mice, which overexpress PTHrP in the islet through the use of the rat insulin II promoter (RIP). Glucose homeostasis in these mice is markedly abnormal; RIP-PTHrP mice are hypoglycemic in the post-prandial and fasting states and display inappropriate hyperinsulinemia. At the end of a 24-hour fast, blood glucose values are 49 mg/dl in RIP-PTHrP mice, as compared to 77 mg/dl in normal littermates; insulin concentrations at this time are 6.3 and 3.9 ng/ml, respectively. Islet perifusion studies failed to demonstrate abnormalities in insulin secretion. In contrast, quantitative islet histomorphometry demonstrates that the total islet number and total islet mass are 2-fold higher in RIP-PTHrP mice than in their normal littermates. PTHrP very likely plays a normal physiologic role within the pancreatic islet. This role is most likely paracrine or autocrine. PTHrP appears to regulate insulin secretion either directly or indirectly, through developmental or growth effects on islet mass. PTHrP may have a role as an agent that enhances islet mass and/or enhances insulin secretion.


Journal of Clinical Investigation | 2003

Mammary-specific deletion of parathyroid hormone-related protein preserves bone mass during lactation

Joshua VanHouten; Pamela Dann; Andrew F. Stewart; Christine J. Watson; Michael Pollak; Andrew C. Karaplis; John J. Wysolmerski

Large amounts of calcium are transferred to offspring by milk. This demand results in negative calcium balance in lactating mothers and is associated with rapid bone loss. The mechanisms of bone loss during lactation are only partly understood. Several studies have suggested that parathyroid hormone-related protein (PTHrP) might be secreted into the circulation by the lactating mammary gland and regulate bone turnover during lactation. Because mammary development fails in the absence of PTHrP, conventional PTHrP knockout mice cannot be used to address this possibility. To examine this hypothesis, we therefore used mice carrying a beta-lactoglobulin promoter-driven Cre transgene, one null PTHrP allele, and one floxed PTHrP allele. Expression of Cre specifically in mammary epithelial cells during late pregnancy and lactation resulted in efficient deletion of the PTHrP gene; mammary gland PTHrP mRNA and milk PTHrP protein were almost completely absent. Removal of PTHrP from the lactating mammary glands resulted in reductions in levels of circulating PTHrP and 1,25-dihydroxy vitamin D and urinary cAMP. In addition, bone turnover was reduced and bone loss during lactation was attenuated. We conclude that during lactation mammary epithelial cells are a source of circulating PTHrP that promotes bone loss by increasing rates of bone resorption.


Journal of Bone and Mineral Research | 2005

Continuous PTH and PTHrP Infusion Causes Suppression of Bone Formation and Discordant Effects on 1,25(OH)2Vitamin D

Mara J. Horwitz; Mary Beth Tedesco; Susan M. Sereika; Mushtaq A. Syed; Adolfo Garcia-Ocaña; Alessandro Bisello; Bruce W. Hollis; Clifford J. Rosen; John J. Wysolmerski; Pamela Dann; Caren M. Gundberg; Andrew F. Stewart

Osteoblast activity and plasma 1,25(OH)2vitamin D are increased in HPT but suppressed in HHM. To model HPT and HHM, we directly compared multiday continuous infusions of PTH versus PTHrP in humans. Continuous infusion of both PTH and PTHrP results in marked and prolonged suppression of bone formation; renal 1,25(OH)2D synthesis was stimulated effectively by PTH but poorly by PTHrP.


Development | 2007

BMP4 and PTHrP interact to stimulate ductal outgrowth during embryonic mammary development and to inhibit hair follicle induction

Julie R Hens; Pamela Dann; Jian Ping Zhang; Stephen E. Harris; Gertraud W. Robinson; John J. Wysolmerski

The mammary glands develop initially as buds arising from the ventral embryonic epidermis. Recent work has shed light on signaling pathways leading to the patterning and formation of the mammary placodes and buds in mouse embryos. Relatively little is known of the signaling pathways that initiate branching morphogenesis and the formation of the ducts from the embryonic buds. Previous studies have shown that parathyroid hormone-related protein (PTHrP; also known as parathyroid hormone-like peptide, Pthlh) is produced by mammary epithelial cells and acts on surrounding mesenchymal cells to promote their differentiation into a mammary-specific dense mesenchyme. As a result of PTHrP signaling, the mammary mesenchyme supports mammary epithelial cell fate, initiates ductal development and patterns the overlying nipple sheath. In this report, we demonstrate that PTHrP acts, in part, by sensitizing mesenchymal cells to BMP signaling. PTHrP upregulates BMP receptor 1A expression in the mammary mesenchyme, enabling it to respond to BMP4, which is expressed within mesenchymal cells underlying the ventral epidermis during mammary bud formation. We demonstrate that BMP signaling is important for outgrowth of normal mammary buds and that BMP4 can rescue outgrowth of PTHrP-/- mammary buds. In addition, the combination of PTHrP and BMP signaling is responsible for upregulating Msx2 gene expression within the mammary mesenchyme, and disruption of the Msx2 gene rescues the induction of hair follicles on the ventral surface of mice overexpressing PTHrP in keratinocytes (K14-PTHrP). Our data suggest that PTHrP signaling sensitizes the mammary mesenchyme to the actions of BMP4, triggering outgrowth of the mammary buds and inducing MSX2 expression, which, in turn, leads to lateral inhibition of hair follicle formation within the developing nipple sheath.


Endocrinology | 2013

Mammary-Specific Ablation of the Calcium-Sensing Receptor During Lactation Alters Maternal Calcium Metabolism, Milk Calcium Transport, and Neonatal Calcium Accrual

Ramanaiah Mamillapalli; Joshua VanHouten; Pamela Dann; Daniel D. Bikle; Wenhan Chang; Edward M. Brown; John J. Wysolmerski

To meet the demands for milk calcium, the lactating mother adjusts systemic calcium and bone metabolism by increasing dietary calcium intake, increasing bone resorption, and reducing renal calcium excretion. As part of this adaptation, the lactating mammary gland secretes PTHrP into the maternal circulation to increase bone turnover and mobilize skeletal calcium stores. Previous data have suggested that, during lactation, the breast relies on the calcium-sensing receptor (CaSR) to coordinate PTHrP secretion and milk calcium transport with calcium availability. To test this idea genetically, we bred BLG-Cre mice with CaSR-floxed mice to ablate the CaSR specifically from mammary epithelial cells only at the onset of lactation (CaSR-cKO mice). Loss of the CaSR in the lactating mammary gland did not disrupt alveolar differentiation or milk production. However, it did increase the secretion of PTHrP into milk and decreased the transport of calcium from the circulation into milk. CaSR-cKO mice did not show accelerated bone resorption, but they did have a decrease in bone formation. Loss of the mammary gland CaSR resulted in hypercalcemia, decreased PTH secretion, and increased renal calcium excretion in lactating mothers. Finally, loss of the mammary gland CaSR resulted in decreased calcium accrual by suckling neonates, likely due to the combination of increased milk PTHrP and decreased milk calcium. These results demonstrate that the mammary gland CaSR coordinates maternal bone and calcium metabolism, calcium transport into milk, and neonatal calcium accrual during lactation.


Endocrinology | 2010

Increased PTHrP and decreased estrogens alter bone turnover but do not reproduce the full effects of lactation on the skeleton.

Laleh Ardeshirpour; Susan Riddle Brian; Pamela Dann; Joshua VanHouten; John J. Wysolmerski

During lactation, calcium is mobilized from the maternal skeleton to supply the breast for milk production. This results in rapid but fully reversible bone loss. Prior studies have suggested that PTHrP, secreted from the breast, and estrogen deficiency, due to suckling-induced central hypogonadism, combine to trigger bone resorption. To determine whether this combination was sufficient to explain bone loss during lactation, we raised PTHrP levels and decreased levels of estrogens in nulliparous mice. PTHrP was infused via osmotic minipumps and estrogens were decreased either by using leuprolide, a long-acting GnRH agonist, or by surgical ovariectomy (OVX). Bone mineral density declined by 23.2 ± 1.3% in the spine and 16.8 ± 1.9% in the femur over 10 d of lactation. This was accompanied by changes in trabecular architecture and an increase in both osteoblast and osteoclast numbers. OVX and PTHrP infusion both induced a modest decline in bone mineral density over 10 d, but leuprolide treatment did not. The combination of OVX and PTHrP was more effective than either treatment alone, but there was no interaction between PTHrP and leuprolide. None of the treatments reproduced the same degree of bone loss caused by lactation. However, both forms of estrogen deficiency led to an increase in osteoclasts, whereas infusion of PTHrP increased both osteoblasts and osteoclasts. Therefore, although the combination of PTHrP and estrogen deficiency contributes to bone loss, it is insufficient to reproduce the full response of the skeleton to lactation, suggesting that other factors also regulate bone metabolism during this period.


Proceedings of the National Academy of Sciences of the United States of America | 2016

PMCA2 regulates HER2 protein kinase localization and signaling and promotes HER2-mediated breast cancer

Jaekwang Jeong; Joshua VanHouten; Pamela Dann; Wonnam Kim; Catherine Sullivan; Herbert Yu; Lance A. Liotta; Virginia Espina; David F. Stern; Peter A. Friedman; John J. Wysolmerski

Significance Unlike other ErbB receptors, human epidermal growth factor receptor 2 (HER2) does not generally become internalized after activation but, instead, remains on the cell surface to signal for prolonged periods. This property is thought to contribute to HER2’s ability to transform cells when overexpressed. The current study demonstrates that HER2’s resistance to endocytosis depends on the presence of the calcium pump, plasma membrane calcium ATPase2 (PMCA2), in specific membrane signaling domains in which intracellular calcium must be kept low to permit continued HER2 biochemical signaling. The dramatic reduction of mammary tumors in mouse mammary tumor virus (MMTV)-Neu mice in the absence of PMCA2 demonstrates its importance in supporting the development of breast tumors. Therefore, targeting interactions between PMCA2 and HER2 may offer therapeutic strategies for breast cancer. In the lactating mammary gland, the plasma membrane calcium ATPase2 (PMCA2) transports milk calcium. Its expression is activated in breast cancers, where high tumor levels predict increased mortality. We find that PMCA2 expression correlates with HER2 levels in breast cancers and that PMCA2 interacts with HER2 in specific actin-rich membrane domains. Knocking down PMCA2 increases intracellular calcium, disrupts interactions between HER2 and HSP-90, inhibits HER2 signaling, and results in internalization and degradation of HER2. Manipulating PMCA2 levels regulates the growth of breast cancer cells, and knocking out PMCA2 inhibits the formation of tumors in mouse mammary tumor virus (MMTV)-Neu mice. These data reveal previously unappreciated molecular interactions regulating HER2 localization, membrane retention, and signaling, as well as the ability of HER2 to generate breast tumors, suggesting that interactions between PMCA2 and HER2 may represent therapeutic targets for breast cancer.


Developmental Dynamics | 2009

Analysis of Gene Expression in PTHrP−/− Mammary Buds Supports a Role for BMP Signaling and MMP2 in the Initiation of Ductal Morphogenesis

Julie Hens; Pamela Dann; Minoti Hiremath; Tien-chi Pan; Lewis A. Chodosh; John J. Wysolmerski

Parathyroid hormone–related protein (PTHrP) acts on the mammary mesenchyme and is required for proper embryonic mammary development. In order to understand PTHrPs effects on mesenchymal cells, we profiled gene expression in WT and PTHrP−/− mammary buds, and in WT and K14‐PTHrP ventral skin at E15.5. By cross‐referencing the differences in gene expression between these groups, we identified 35 genes potentially regulated by PTHrP in the mammary mesenchyme, including 6 genes known to be involved in BMP signaling. One of these genes was MMP2. We demonstrated that PTHrP and BMP4 regulate MMP2 gene expression and MMP2 activity in mesenchymal cells. Using mammary bud cultures, we demonstrated that MMP2 acts downstream of PTHrP to stimulate ductal outgrowth. Future studies on the functional role of other genes on this list should expand our knowledge of how PTHrP signaling triggers the onset of ductal outgrowth from the embryonic mammary buds. Developmental Dynamics 238:2713–2724, 2009.

Collaboration


Dive into the Pamela Dann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge