Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pamela DeRosse is active.

Publication


Featured researches published by Pamela DeRosse.


Nature Genetics | 2009

Microduplications of 16p11.2 are associated with schizophrenia.

Shane McCarthy; Vladimir Makarov; George Kirov; Anjene Addington; Jon McClellan; Seungtai Yoon; Diana O. Perkins; Diane E. Dickel; Mary Kusenda; Olga Krastoshevsky; Verena Krause; Ravinesh A. Kumar; Detelina Grozeva; Dheeraj Malhotra; Tom Walsh; Elaine H. Zackai; Jaya Ganesh; Ian D. Krantz; Nancy B. Spinner; Patricia Roccanova; Abhishek Bhandari; Kevin Pavon; B. Lakshmi; Anthony Leotta; Jude Kendall; Yoon-ha Lee; Vladimir Vacic; Sydney Gary; Lilia M. Iakoucheva; Timothy J. Crow

Recurrent microdeletions and microduplications of a 600-kb genomic region of chromosome 16p11.2 have been implicated in childhood-onset developmental disorders. We report the association of 16p11.2 microduplications with schizophrenia in two large cohorts. The microduplication was detected in 12/1,906 (0.63%) cases and 1/3,971 (0.03%) controls (P = 1.2 × 10−5, OR = 25.8) from the initial cohort, and in 9/2,645 (0.34%) cases and 1/2,420 (0.04%) controls (P = 0.022, OR = 8.3) of the replication cohort. The 16p11.2 microduplication was associated with a 14.5-fold increased risk of schizophrenia (95% CI (3.3, 62)) in the combined sample. A meta-analysis of datasets for multiple psychiatric disorders showed a significant association of the microduplication with schizophrenia (P = 4.8 × 10−7), bipolar disorder (P = 0.017) and autism (P = 1.9 × 10−7). In contrast, the reciprocal microdeletion was associated only with autism and developmental disorders (P = 2.3 × 10−13). Head circumference was larger in patients with the microdeletion than in patients with the microduplication (P = 0.0007).


Proceedings of the National Academy of Sciences of the United States of America | 2007

Runs of homozygosity reveal highly penetrant recessive loci in schizophrenia

Todd Lencz; Christophe G. Lambert; Pamela DeRosse; Katherine E. Burdick; T. Vance Morgan; John Kane; Raju Kucherlapati; Anil K. Malhotra

Evolutionarily significant selective sweeps may result in long stretches of homozygous polymorphisms in individuals from outbred populations. We developed whole-genome homozygosity association (WGHA) methodology to characterize this phenomenon in healthy individuals and to use this genomic feature to identify genetic risk loci for schizophrenia (SCZ). Applying WGHA to 178 SCZ cases and 144 healthy controls genotyped at 500,000 markers, we found that runs of homozygosity (ROHs), ranging in size from 200 kb to 15 mb, were common in unrelated Caucasians. Properties of common ROHs in healthy subjects, including chromosomal location and presence of nonancestral haplotypes, converged with prior reports identifying regions under selective pressure. This interpretation was further supported by analysis of multiethnic HapMap samples genotyped with the same markers. ROHs were significantly more common in SCZ cases, and a set of nine ROHs significantly differentiated cases from controls. Four of these 9 “risk ROHs” contained or neighbored genes associated with SCZ (NOS1AP, ATF2, NSF, and PIK3C3). Several of these risk ROHs were very rare in healthy subjects, suggesting that recessive effects of relatively high penetrance may explain a proportion of the genetic liability for SCZ. Other risk ROHs feature haplotypes that are also common in healthy individuals, possibly indicating a source of balancing selection.


American Journal of Human Genetics | 2004

Association of the DTNBP1 Locus with Schizophrenia in a U.S. Population

Birgit Funke; Christine T. Finn; Alex M. Plocik; Stephen Lake; Pamela DeRosse; John M. Kane; Raju Kucherlapati; Anil K. Malhotra

Linkage and association studies have recently implicated dystrobrevin-binding protein 1 (DTNBP1) in the etiology of schizophrenia. We analyzed seven previously tested DTNBP1 single-nucleotide polymorphisms (SNPs) in a cohort of 524 individuals with schizophrenia or schizoaffective disorder and 573 control subjects. The minor alleles of three SNPs (P1578, P1763, and P1765) were positively associated with the diagnosis of schizophrenia or schizoaffective disorder in the white subset of the study cohort (258 cases, 467 controls), with P1578 showing the most significant association (odds ratio 1.76, P =.0026). The same three SNPs were also associated in a smaller Hispanic subset (51 cases, 32 controls). No association was observed in the African American subset (215 cases, 74 controls). A stratified analysis of the white and Hispanic subsets showed association with the minor alleles of four SNPs (P1578, P1763, P1320, and P1765). Again, the most significant association was observed for P1578 (P =.0006). Haplotype analysis supported these findings, with a single risk haplotype significantly overrepresented in the white sample (P =.005). Our study provides further evidence for a role of the DTNBP1 gene in the genetic etiology of schizophrenia.


Schizophrenia Bulletin | 2012

White Matter Development in Adolescence: Diffusion Tensor Imaging and Meta-Analytic Results

Bart D. Peters; Philip R. Szeszko; Joaquim Radua; Toshikazu Ikuta; Patricia Gruner; Pamela DeRosse; Jian-Ping Zhang; Antonio Giorgio; D Qiu; Susan F. Tapert; Jens Brauer; Miya R. Asato; Pl Khong; Anthony C. James; Juan A. Gallego; Anil K. Malhotra

BACKGROUND In light of the evidence for brain white matter (WM) abnormalities in schizophrenia, study of normal WM maturation in adolescence may provide critical insights relevant to the neurodevelopment of the disorder. Voxel-wise diffusion tensor imaging (DTI) studies have consistently demonstrated increases in fractional anisotropy (FA), a putative measure of WM integrity, from childhood into adolescence. However, the WM tracts that show FA increases have been variable across studies. Here, we aimed to assess which WM tracts show the most pronounced changes across adolescence. METHODS DTI was performed in 78 healthy subjects aged 8-21 years, and voxel-wise analysis conducted using tract-based spatial statistics (TBSS). In addition, we performed the first meta-analysis of TBSS studies on WM development in adolescence. RESULTS In our sample, we observed bilateral increases in FA with age, which were most significant in the left superior longitudinal fasciculus (SLF), inferior longitudinal fasciculus, inferior fronto-occipital fasciculus, and anterior thalamic radiation. These findings were confirmed by the meta-analysis, and FA increase in the bilateral SLF was the most consistent finding across studies. Moreover, in our sample, FA of the bilateral SLF showed a positive association with verbal working memory performance and partially mediated increases in verbal fluency as a function of increasing age. CONCLUSIONS These data highlight increasing connectivity in the SLF during adolescence. In light of evidence for compromised SLF integrity in high-risk and first-episode patients, these data suggest that abnormal maturation of the SLF during adolescence may be a key target in the neurodevelopment of schizophrenia.


Neuropsychopharmacology | 2011

The MATRICS Consensus Cognitive Battery in Patients with Bipolar I Disorder

Katherine E. Burdick; Terry E. Goldberg; Barbara A. Cornblatt; Richard S.E. Keefe; Chaya B. Gopin; Pamela DeRosse; Raphael J. Braga; Anil K. Malhotra

The Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) initiative was devised to identify a neurocognitive battery to be used in clinical trials targeting cognition in schizophrenia, a process, which resulted in the MATRICS Consensus Cognitive Battery (MCCB). The MCCB has been selected by the United States Food and Drug Administration to be used as the primary outcome measure in registry trials for cognitive agents in schizophrenia. Given the clinical and cognitive overlap between schizophrenia and bipolar disorder (BPD), it is likely that any compound shown to have cognitive benefits in schizophrenia will subsequently be tested in BPD. Unlike the MCCB for schizophrenia, there remains no consensus regarding outcome measures if cognitive trials were to be undertaken in BPD. The utility of the MCCB in BPD has not yet been systematically investigated. We administered the MCCB to 80 bipolar I patients; 37 were strictly euthymic and 43 were symptomatic. We compared their performance with a demographically matched healthy sample (n=148) on seven MCCB domains, and the composite. BPD patients were statistically significantly impaired on five of seven MCCB domains at levels consistent with meta-analytic studies of cognition in BPD. In contrast, patients’ performance was less impaired on the Reasoning and Problem-solving and Social Cognition domains, differences that did not survive statistical correction for multiple testing. Symptomatic status only modestly influenced performance. These data suggest that the MCCB, devised for use in schizophrenia, may also represent a useful outcome measure in cognitive trials for BPD. Additional studies should address important psychometric features such as repeatability and potential practice and/or ceiling effects.


Human Molecular Genetics | 2008

Elucidating the relationship between DISC1, NDEL1 and NDE1 and the risk for schizophrenia: Evidence of epistasis and competitive binding

Katherine E. Burdick; Atsushi Kamiya; Colin A. Hodgkinson; Todd Lencz; Pamela DeRosse; Koko Ishizuka; Sarah Elashvili; Hiroyuki Arai; David Goldman; Akira Sawa; Anil K. Malhotra

DISC1 influences susceptibility to psychiatric disease and related phenotypes. Intact functions of DISC1 and its binding partners, NDEL1 and NDE1, are critical to neurodevelopmental processes aberrant in schizophrenia (SZ). Despite evidence of an NDEL1–DISC1 protein interaction, there have been no investigations of the NDEL1 gene or the relationship between NDEL1 and DISC1 in SZ. We genotyped six NDEL1 single-nucleotide polymorphisms (SNPs) in 275 Caucasian SZ patients and 200 controls and tested for association and interaction between the functional SNP Ser704Cys in DISC1 and NDEL1. We also evaluated the relationship between NDE1 and DISC1 genotype and SZ. Finally, in a series of in vitro assays, we determined the binding profiles of NDEL1 and NDE1, in relation to DISC1 Ser704Cys. We observed a single haplotype block within NDEL1; the majority of variation was captured by NDEL1 rs1391768. We observed a significant interaction between rs1391768 and DISC1 Ser704Cys, with the effect of NDEL1 on SZ evident only against the background of DISC1 Ser704 homozygosity. Secondary analyses revealed no direct relationship between NDE1 genotype and SZ; however, there was an opposite pattern of risk for NDE1 genotype when conditioned on DISC1 Ser704Cys, with NDE1 rs3784859 imparting a significant effect but only in the context of a Cys-carrying background. In addition, we report opposing binding patterns of NDEL1 and NDE1 to Ser704 versus Cys704, at the same DISC1 binding domain. These data suggest that NDEL1 significantly influences risk for SZ via an interaction with DISC1. We propose a model where NDEL1 and NDE1 compete for binding with DISC1.


Molecular Psychiatry | 2014

Molecular genetic evidence for overlap between general cognitive ability and risk for schizophrenia: a report from the Cognitive Genomics consorTium (COGENT).

Todd Lencz; Emma Knowles; Gail Davies; Saurav Guha; David C. Liewald; Srdjan Djurovic; Ingrid Melle; Kjetil Sundet; Andrea Christoforou; Ivar Reinvang; Semanti Mukherjee; Pamela DeRosse; Astri J. Lundervold; Vidar M. Steen; Majnu John; Thomas Espeseth; Katri Räikkönen; Elisabeth Widen; Aarno Palotie; Johan G. Eriksson; Ina Giegling; Bettina Konte; Masashi Ikeda; Panos Roussos; Stella G. Giakoumaki; Katherine E. Burdick; A. Payton; William Ollier; M. Horan; Gary Donohoe

It has long been recognized that generalized deficits in cognitive ability represent a core component of schizophrenia (SCZ), evident before full illness onset and independent of medication. The possibility of genetic overlap between risk for SCZ and cognitive phenotypes has been suggested by the presence of cognitive deficits in first-degree relatives of patients with SCZ; however, until recently, molecular genetic approaches to test this overlap have been lacking. Within the last few years, large-scale genome-wide association studies (GWAS) of SCZ have demonstrated that a substantial proportion of the heritability of the disorder is explained by a polygenic component consisting of many common single-nucleotide polymorphisms (SNPs) of extremely small effect. Similar results have been reported in GWAS of general cognitive ability. The primary aim of the present study is to provide the first molecular genetic test of the classic endophenotype hypothesis, which states that alleles associated with reduced cognitive ability should also serve to increase risk for SCZ. We tested the endophenotype hypothesis by applying polygenic SNP scores derived from a large-scale cognitive GWAS meta-analysis (~5000 individuals from nine nonclinical cohorts comprising the Cognitive Genomics consorTium (COGENT)) to four SCZ case-control cohorts. As predicted, cases had significantly lower cognitive polygenic scores compared to controls. In parallel, polygenic risk scores for SCZ were associated with lower general cognitive ability. In addition, using our large cognitive meta-analytic data set, we identified nominally significant cognitive associations for several SNPs that have previously been robustly associated with SCZ susceptibility. Results provide molecular confirmation of the genetic overlap between SCZ and general cognitive ability, and may provide additional insight into pathophysiology of the disorder.


Biological Psychology | 2008

DISC1 is associated with prefrontal cortical gray matter and positive symptoms in schizophrenia

Philip R. Szeszko; Colin A. Hodgkinson; Delbert G. Robinson; Pamela DeRosse; Robert M. Bilder; Todd Lencz; Katherine E. Burdick; Barbara Napolitano; Julia D. Betensky; John Kane; David Goldman; Anil K. Malhotra

BACKGROUND DISC1 is considered a susceptibility gene for schizophrenia and schizoaffective disorder, but little is known regarding the potential mechanisms through which it may confer increased risk. Given that DISC1 plays a role in cerebral cortex development, polymorphisms in this gene may have relevance for neurobiological models of schizophrenia that have implicated cortical deficits in its pathophysiology. METHODS We investigated whether the DISC1 leu607phe polymorphism was associated with prefrontal gray matter volumes using magnetic resonance imaging in a cohort of patients with schizophrenia (N=19) and healthy volunteers (N=25) and positive and negative symptoms in 200 patients with schizophrenia. RESULTS Among patients and healthy volunteers, phe carriers (N=11) had significantly less gray matter in the superior frontal gyrus and anterior cingulate gyrus compared to leu/leu homozygotes (N=33). Further, among patients left superior frontal gyrus gray matter volume was significantly negatively correlated with severity of hallucinations. In addition, patients who were phe carriers (N=144) had significantly greater severity of positive symptoms (hallucinations) compared to patients who were leu/leu homozygotes (N=56). DISCUSSION These findings implicate DISC1 in variation of prefrontal cortical volume and positive symptoms, thus providing a potential mechanism through which DISC1 may confer increased risk for schizophrenia or schizoaffective disorder.


Neuropsychopharmacology | 2009

A Voxel-Based Diffusion Tensor Imaging Study of White Matter in Bipolar Disorder

Katie Mahon; Jinghui Wu; Anil K. Malhotra; Katherine E. Burdick; Pamela DeRosse; Babak A. Ardekani; Philip R. Szeszko

There is evidence from post-mortem and magnetic resonance imaging studies that hyperintensities, oligodendroglial abnormalities, and gross white matter volumetric alterations are involved in the pathophysiology of bipolar disorder. There is also functional imaging evidence for a defect in frontal cortico–subcortical pathways in bipolar disorder, but the white matter comprising these pathways has not been well investigated. Few studies have investigated white matter integrity in patients with bipolar disorder compared to healthy volunteers and the majority of studies have used manual region-of-interest approaches. In this study, we compared fractional anisotropy (FA) values between 30 patients with bipolar disorder and 38 healthy volunteers in the brain white matter using a voxelwise analysis following intersubject registration to Talairach space. Compared to healthy volunteers, patients demonstrated significantly (p<0.001; cluster size ⩾50) higher FA within the right and left frontal white matter and lower FA within the left cerebellar white matter. Examination of individual eigenvalues indicated that group differences in both axial diffusivity and radial diffusivity contributed to abnormal FA within these regions. Tractography was performed in template space on averaged diffusion tensor imaging data from all individuals. Extraction of bundles passing through the clusters that differed significantly between groups suggested that white matter abnormalities along the pontine crossing tract, corticospinal/corticopontine tracts, and thalamic radiation fibers may be involved in the pathogenesis of bipolar disorder. Our findings are consistent with models of bipolar disorder that implicate dysregulation of cortico-subcortical and cerebellar regions in the disorder and may have relevance for phenomenology.


WOS | 2014

Molecular genetic evidence for overlap between general cognitive ability and risk for schizophrenia: a report from the Cognitive Genomics consorTium (COGENT)

Todd Lencz; Emma Knowles; Gail Davies; Saurav Guha; David C. Liewald; John M. Starr; Srdjan Djurovic; Ingrid Melle; Kjetil Sundet; Andrea Christoforou; Ivar Reinvang; Semanti Mukherjee; Pamela DeRosse; Astri J. Lundervold; Vidar M. Steen; Majnu John; Thomas Espeseth; Katri Räikkönen; E. Widen; Aarno Palotie; Johan G. Eriksson; I. Giegling; Bettina Konte; Masashi Ikeda; Panos Roussos; Stella G. Giakoumaki; Katherine E. Burdick; A. Payton; W. Ollier; M. Horan

It has long been recognized that generalized deficits in cognitive ability represent a core component of schizophrenia (SCZ), evident before full illness onset and independent of medication. The possibility of genetic overlap between risk for SCZ and cognitive phenotypes has been suggested by the presence of cognitive deficits in first-degree relatives of patients with SCZ; however, until recently, molecular genetic approaches to test this overlap have been lacking. Within the last few years, large-scale genome-wide association studies (GWAS) of SCZ have demonstrated that a substantial proportion of the heritability of the disorder is explained by a polygenic component consisting of many common single-nucleotide polymorphisms (SNPs) of extremely small effect. Similar results have been reported in GWAS of general cognitive ability. The primary aim of the present study is to provide the first molecular genetic test of the classic endophenotype hypothesis, which states that alleles associated with reduced cognitive ability should also serve to increase risk for SCZ. We tested the endophenotype hypothesis by applying polygenic SNP scores derived from a large-scale cognitive GWAS meta-analysis (~5000 individuals from nine nonclinical cohorts comprising the Cognitive Genomics consorTium (COGENT)) to four SCZ case-control cohorts. As predicted, cases had significantly lower cognitive polygenic scores compared to controls. In parallel, polygenic risk scores for SCZ were associated with lower general cognitive ability. In addition, using our large cognitive meta-analytic data set, we identified nominally significant cognitive associations for several SNPs that have previously been robustly associated with SCZ susceptibility. Results provide molecular confirmation of the genetic overlap between SCZ and general cognitive ability, and may provide additional insight into pathophysiology of the disorder.

Collaboration


Dive into the Pamela DeRosse's collaboration.

Top Co-Authors

Avatar

Anil K. Malhotra

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Katherine E. Burdick

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Todd Lencz

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Philip R. Szeszko

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Toshikazu Ikuta

University of Mississippi

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Majnu John

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

John M. Kane

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge