Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pamela Freiden is active.

Publication


Featured researches published by Pamela Freiden.


Nature Protocols | 2015

Human norovirus culture in B cells

Melissa K. Jones; Katrina R. Grau; Veronica Costantini; Abimbola O. Kolawole; Miranda de Graaf; Pamela Freiden; Christina L. Graves; Marion Koopmans; Shannon M. Wallet; Scott A. Tibbetts; Stacey Schultz-Cherry; Christiane E. Wobus; Jan Vinjé; Stephanie M. Karst

Human noroviruses (HuNoVs) are a leading cause of foodborne disease and severe childhood diarrhea, and they cause a majority of the gastroenteritis outbreaks worldwide. However, the development of effective and long-lasting HuNoV vaccines and therapeutics has been greatly hindered by their uncultivability. We recently demonstrated that a HuNoV replicates in human B cells, and that commensal bacteria serve as a cofactor for this infection. In this protocol, we provide detailed methods for culturing the GII.4-Sydney HuNoV strain directly in human B cells, and in a coculture system in which the virus must cross a confluent epithelial barrier to access underlying B cells. We also describe methods for bacterial stimulation of HuNoV B cell infection and for measuring viral attachment to the surface of B cells. Finally, we highlight variables that contribute to the efficiency of viral replication in this system. Infection assays require 3 d and attachment assays require 3 h. Analysis of infection or attachment samples, including RNA extraction and RT-qPCR, requires ∼6 h.


Journal of Virology | 2011

Increased Pathogenicity of a Reassortant 2009 Pandemic H1N1 Influenza Virus Containing an H5N1 Hemagglutinin

Troy D. Cline; Erik A. Karlsson; Pamela Freiden; Bradley J. Seufzer; Jerold E. Rehg; Richard J. Webby; Stacey Schultz-Cherry

ABSTRACT A novel H1N1 influenza virus emerged in 2009 (pH1N1) to become the first influenza pandemic of the 21st century. This virus is now cocirculating with highly pathogenic H5N1 avian influenza viruses in many parts of the world, raising concerns that a reassortment event may lead to highly pathogenic influenza strains with the capacity to infect humans more readily and cause severe disease. To investigate the virulence of pH1N1-H5N1 reassortant viruses, we created pH1N1 (A/California/04/2009) viruses expressing individual genes from an avian H5N1 influenza strain (A/Hong Kong/483/1997). Using several in vitro models of virus replication, we observed increased replication for a reassortant CA/09 virus expressing the hemagglutinin (HA) gene of HK/483 (CA/09-483HA) relative to that of either parental CA/09 virus or reassortant CA/09 expressing other HK/483 genes. This increased replication correlated with enhanced pathogenicity in infected mice similar to that of the parental HK/483 strain. The serial passage of the CA/09 parental virus and the CA/09-483HA virus through primary human lung epithelial cells resulted in increased pathogenicity, suggesting that these viruses easily adapt to humans and become more virulent. In contrast, serial passage attenuated the parental HK/483 virus in vitro and resulted in slightly reduced morbidity in vivo, suggesting that sustained replication in humans attenuates H5N1 avian influenza viruses. Taken together, these data suggest that reassortment between cocirculating human pH1N1 and avian H5N1 influenza strains will result in a virus with the potential for increased pathogenicity in mammals.


European Journal of Clinical Microbiology & Infectious Diseases | 2004

Subcutaneous Administration of a Recombinant Vaccinia Virus Vaccine Expressing Multiple Envelopes of HIV-1

Karen S. Slobod; Timothy D. Lockey; Nanna Howlett; R. V. Srinivas; Samantha D. Rencher; Pamela Freiden; Peter C. Doherty; Julia L. Hurwitz

A critical goal of HIV vaccine development is the identification of safe and immunogenic vectors. Recombinant vaccinia virus is a highly effective vaccine vector, with demonstrated capacity to protect animals from various viral pathogens, including rabies. Unlike many other candidate vaccine vectors, vast human experience exists with the parenteral smallpox vaccine. However, consideration of recombinant vaccinia virus as a modern vaccine is complicated by the relatively high prevalence of immunocompromised persons compared to such prevalence 4 or more decades ago (when smallpox vaccination was still routine). Administering vaccine by the subcutaneous (SQ) route, rather than the traditional scarification route, could address these concerns. SQ administration could prevent transmission of vaccinia virus to potentially vulnerable persons; it could also avoid the most common adverse events, which are cutaneous in nature. However, previous studies suggest that elicitation of immune response against passenger gene products following SQ administration requires development of a superficial pox lesion, defeating the intention of SQ administration. This is the first report to demonstrate that SQ administration of recombinant vaccinia virus does elicit immune response to the passenger protein in the absence of a cutaneous pox lesion. Results further show that a multi-envelope HIV vaccine can elicit antibody responses toward heterologous HIV-1 not represented by primary sequence in the vaccine. These findings have global implications because they support the consideration of recombinant vaccinia virus as a valuable HIV vaccine vector system.


PLOS ONE | 2010

Specific recognition of influenza A/H1N1/2009 antibodies in human serum: a simple virus-free ELISA method.

Mario M. Alvarez; Felipe López-Pacheco; José M. Aguilar-Yáñez; Roberto Portillo-Lara; Gonzalo I. Mendoza-Ochoa; Sergio García-Echauri; Pamela Freiden; Stacey Schultz-Cherry; Manuel I. Zertuche-Guerra; David Bulnes-Abundis; Johari Salgado-Gallegos; Leticia Elizondo-Montemayor; Martín Hernández-Torre

Background Although it has been estimated that pandemic Influenza A H1N1/2009 has infected millions of people from April to October 2009, a more precise figure requires a worldwide large-scale diagnosis of the presence of Influenza A/H1N1/2009 antibodies within the population. Assays typically used to estimate antibody titers (hemagglutination inhibition and microneutralization) would require the use of the virus, which would seriously limit broad implementation. Methodology/Principal Findings An ELISA method to evaluate the presence and relative concentration of specific Influenza A/H1N1/2009 antibodies in human serum samples is presented. The method is based on the use of a histidine-tagged recombinant fragment of the globular region of the hemagglutinin (HA) of the Influenza A H1N1/2009 virus expressed in E. coli. Conclusions/Significance The ELISA method consistently discerns between Inf A H1N1 infected and non-infected subjects, particularly after the third week of infection/exposure. Since it does not require the use of viral particles, it can be easily and quickly implemented in any basic laboratory. In addition, in a scenario of insufficient vaccine availability, the use of this ELISA could be useful to determine if a person has some level of specific antibodies against the virus and presumably at least partial protection.


Viruses | 2010

Heterologous Prime-Boost HIV-1 Vaccination Regimens in Pre-Clinical and Clinical Trials

Scott A. Brown; Sherri Surman; Robert Sealy; Bart G. Jones; Karen S. Slobod; Kristen Branum; Timothy D. Lockey; Nanna Howlett; Pamela Freiden; Patricia M. Flynn; Julia L. Hurwitz

Currently, there are more than 30 million people infected with HIV-1 and thousands more are infected each day. Vaccination is the single most effective mechanism for prevention of viral disease, and after more than 25 years of research, one vaccine has shown somewhat encouraging results in an advanced clinical efficacy trial. A modified intent-to-treat analysis of trial results showed that infection was approximately 30% lower in the vaccine group compared to the placebo group. The vaccine was administered using a heterologous prime-boost regimen in which both target antigens and delivery vehicles were changed during the course of inoculations. Here we examine the complexity of heterologous prime-boost immunizations. We show that the use of different delivery vehicles in prime and boost inoculations can help to avert the inhibitory effects caused by vector-specific immune responses. We also show that the introduction of new antigens into boost inoculations can be advantageous, demonstrating that the effect of ‘original antigenic sin’ is not absolute. Pre-clinical and clinical studies are reviewed, including our own work with a three-vector vaccination regimen using recombinant DNA, virus (Sendai virus or vaccinia virus) and protein. Promising preliminary results suggest that the heterologous prime-boost strategy may possibly provide a foundation for the future prevention of HIV-1 infections in humans.


PLOS Pathogens | 2015

Non-Human Primates Harbor Diverse Mammalian and Avian Astroviruses Including Those Associated with Human Infections

Erik A. Karlsson; Christopher T. Small; Pamela Freiden; Mostafa M. Feeroz; Frederick A. Matsen; Sorn San; M. Kamrul Hasan; David Wang; Lisa Jones-Engel; Stacey Schultz-Cherry

Astroviruses (AstVs) are positive sense, single-stranded RNA viruses transmitted to a wide range of hosts via the fecal-oral route. The number of AstV-infected animal hosts has rapidly expanded in recent years with many more likely to be discovered because of the advances in viral surveillance and next generation sequencing. Yet no study to date has identified human AstV genotypes in animals, although diverse AstV genotypes similar to animal-origin viruses have been found in children with diarrhea and in one instance of encephalitis. Here we provide important new evidence that non-human primates (NHP) can harbor a wide variety of mammalian and avian AstV genotypes, including those only associated with human infection. Serological analyses confirmed that >25% of the NHP tested had antibodies to human AstVs. Further, we identified a recombinant AstV with parental relationships to known human AstVs. Phylogenetic analysis suggests AstVs in NHP are on average evolutionarily much closer to AstVs from other animals than are AstVs from bats, a frequently proposed reservoir. Our studies not only demonstrate that human astroviruses can be detected in NHP but also suggest that NHP are unique in their ability to support diverse AstV genotypes, further challenging the paradigm that astrovirus infection is species-specific.


Journal of Virology | 2014

Human H7N9 and H5N1 Influenza Viruses Differ in Induction of Cytokines and Tissue Tropism

Victoria A. Meliopoulos; Erik A. Karlsson; Lisa Kercher; Troy D. Cline; Pamela Freiden; Susu Duan; Peter Vogel; Richard J. Webby; Yi Guan; Malik Peiris; Paul G. Thomas; Stacey Schultz-Cherry

ABSTRACT Since emerging in 2013, the avian-origin H7N9 influenza viruses have resulted in over 400 human infections, leading to 115 deaths to date. Although the epidemiology differs from human highly pathogenic avian H5N1 influenza virus infections, there is a similar rapid progression to acute respiratory distress syndrome. The aim of these studies was to compare the pathological and immunological characteristics of a panel of human H7N9 and H5N1 viruses in vitro and in vivo. Although there were similarities between particular H5N1 and H7N9 viruses, including association between lethal disease and spread to the alveolar spaces and kidney, there were also strain-specific differences. Both H5N1 and H7N9 viruses are capable of causing lethal infections, with mortality correlating most strongly with wider distribution of viral antigen in the lungs, rather than with traditional measures of virus titer and host responses. Strain-specific differences included hypercytokinemia in H5N1 infections that was not seen with the H7N9 infections regardless of lethality. Conversely, H7N9 viruses showed a greater tropism for respiratory epithelium covering nasal passages and nasopharynx-associated lymphoid tissue than H5N1 viruses, which may explain the enhanced transmission in ferret models. Overall, these studies highlight some distinctive properties of H5N1 and H7N9 viruses in different in vitro and in vivo models. IMPORTANCE The novel avian-origin H7N9 pandemic represents a serious threat to public health. The ability of H7N9 to cause serious lung pathology, leading in some cases to the development of acute respiratory distress syndrome, is of particular concern. Initial reports of H7N9 infection compared them to infections caused by highly pathogenic avian (HPAI) H5N1 viruses. Thus, it is of critical importance to understand the pathology and immunological response to infection with H7N9 compared to HPAI H5N1 viruses. We compared these responses in both in vitro and in vivo models, and found that H5N1 and H7N9 infections exhibit distinct pathological, immunological, and tissue tropism differences that could explain differences in clinical disease and viral transmission.


Emerging microbes & infections | 2013

Prevalence and characterization of influenza viruses in diverse species in Los Llanos, Colombia

Erik A. Karlsson; Karl Ciuoderis; Pamela Freiden; Bradley J. Seufzer; Jeremy C. Jones; Jordan Johnson; Rocio Parra; Agustín Góngora; Dario Cardenas; Diana Barajas; Jorge E. Osorio; Stacey Schultz-Cherry

While much is known about the prevalence of influenza viruses in North America and Eurasia, their prevalence in birds and mammals in South America is largely unknown. To fill this knowledge gap and provide a baseline for future ecology and epidemiology studies, we conducted 2 years of influenza surveillance in the eastern plains (Los Llanos) region of Colombia. Real-time reverse transcriptase polymerase chain reaction (RT-PCR) identified influenza viruses in wild birds, domestic poultry, swine and horses. Prevalence ranged from 2.6% to 13.4% across species. Swine showed the highest prevalence and were infected primarily with 2009 pandemic H1N1 (pH1N1) viruses genetically related to those in humans. In addition, we isolated H5N2 viruses from two resident species of whistling ducks (genus Dendrocygna) that differed completely from previous South American isolates, instead genetically resembling North American wild bird viruses. Both strains caused low pathogenicity in chickens and mammals. The prevalence and subtype diversity of influenza viruses isolated from diverse species within a small area of Colombia highlights the need for enhanced surveillance throughout South America, including monitoring of the potential transmissibility of low-pathogenic H5N2 viruses from wild birds to domestic poultry and the emergence of reassortant viruses in domestic swine.


Journal of Virology | 2013

Crystal Structure of the Avian Astrovirus Capsid Spike

Rebecca M. DuBois; Pamela Freiden; Shauna Marvin; Muralidhar Reddivari; Richard J. Heath; Stephen W. White; Stacey Schultz-Cherry

ABSTRACT Astroviruses are small, nonenveloped, single-stranded RNA viruses that cause diarrhea in a wide variety of mammals and birds. On the surface of the viral capsid are globular spikes that are thought to be involved in attachment to host cells. To understand the basis of species specificity, we investigated the structure of an avian astrovirus capsid spike and compared it to a previously reported human astrovirus capsid spike structure. Here we report the crystal structure of the turkey astrovirus 2 (TAstV-2) capsid surface spike domain, determined to 1.5-Å resolution, and identify three conserved patches on the surface of the spike that are candidate avian receptor-binding sites. Surprisingly, the overall TAstV-2 capsid spike structure is unique, with only distant structural similarities to the human astrovirus capsid spike and other viral capsid spikes. There is an absence of conserved putative receptor-binding sites between the human and avian spikes. However, there is evidence for carbohydrate-binding sites in both human and avian spikes, and studies with human astrovirus 1 (HAstV-1) suggest a minor role in infection for chondroitin sulfate but not heparin. Overall, our structural and functional studies provide new insights into astrovirus host cell entry, species specificity, and evolution.


Glycobiology | 2012

Receptor-binding specificity of the human parainfluenza virus type 1 hemagglutinin–neuraminidase glycoprotein

Irina V. Alymova; Allen Portner; Vasiliy P. Mishin; Jonathan A. McCullers; Pamela Freiden; Garry L. Taylor

The hemagglutinin-neuraminidase (HN) glycoprotein is utilized by human parainfluenza viruses for binding to the host cell. By the use of glycan array assays, we demonstrate that, in addition to the first catalytic-binding site, the HN of human parainfluenza virus type 1 has a second site for binding covered by N-linked glycan. Our data suggest that attachment of the first site to sialic acid (SA)-linked receptors triggers exposure of the second site. We found that both sites bind to α2-3-linked SAs with a preference for a sialyl-Lewis(x) motif. Binding to α2-3-linked SAs with a sulfated sialyl-Lewis motif as well as to α2-8-linked SAs was unique for the second binding site. Neither site recognizes α2-6-linked oligosaccharides.

Collaboration


Dive into the Pamela Freiden's collaboration.

Top Co-Authors

Avatar

Stacey Schultz-Cherry

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Karen S. Slobod

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Bart G. Jones

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Julia L. Hurwitz

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Robert Sealy

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Sherri Surman

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Timothy D. Lockey

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Nanna Howlett

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Kristen Branum

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Scott A. Brown

St. Jude Children's Research Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge