Pamela J. Holland
University of Edinburgh
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pamela J. Holland.
Molecular and Cellular Neuroscience | 2006
Eve M. Lutz; E. Ronaldson; P. Shaw; Melanie S. Johnson; Pamela J. Holland; Rory Mitchell
Expression of VPAC and PAC1 receptor isoforms was determined in six neuroblastoma cell lines as well as in human embryonic and adult brain using reverse transcriptase PCR and quantitative PCR. PAC1 receptor splice variants missing a 21 amino acid sequence in the amino terminal domain were found to be the major receptor variants in the neuroblastoma cell lines and also were highly expressed in embryonic brain compared to adult brain. In four of the neuroblastoma cell lines, VIP and PACAP stimulated cyclic AMP production with different potencies and levels of maximal stimulation. High potency and greatest maximal stimulation of cyclic AMP for each peptide were recorded in SH-SY5Y cells, indicating the presence of high affinity VIP and PACAP receptors. Further characterization of specific VPAC and PAC1 receptor isoforms was carried out in the SH-SY5Y cell line, where along with known PAC1 receptor splice variants and the VPAC2 receptor, a number of novel PAC1 receptor splice variants were identified. The comparatively low level expression of the VPAC2 receptor along with the poor responsiveness of SH-SY5Y cells to the VPAC2 receptor-specific agonist Ro 25-1553 indicated that this receptor did not contribute significantly to the observed VIP responses. When the individual PAC1 receptor isoforms were expressed in COS 7 cells, the ability of VIP to activate cyclic AMP production was increased more than 50-fold at the majority of the PAC1 receptor variants lacking the 21 amino acid amino terminal domain sequence compared to those with the complete domain. Smaller changes were seen in the potency of PACAP-38. Similar trends were seen with inositol phosphate responses, where in each case agonist potencies were lower than for cyclic AMP production. The results of this study show that the combination of different amino terminal and intracellular loop 3 splicing variants in the PAC1 receptor dictates the ability of agonists, particularly VIP, to activate signaling pathways. VIP has considerably greater potency at most PAC1 receptors with the short amino terminal domain, and these therefore may mediate physiological effects of both VIP and PACAP. Furthermore, there may be a phenotypic switch in the expression of different PAC1 receptor amino terminal splice variants between embryonic and mature nervous system, indicating that regulation of this event may have an important role in VIP/PACAP function, particularly in the developing nervous system.
Journal of Biological Chemistry | 2003
Rory Mitchell; Derek N. Robertson; Pamela J. Holland; Daniel Collins; Eve M. Lutz; Melanie S. Johnson
G protein-coupled receptors can potentially activate phospholipase D (PLD) by a number of routes. We show here that the native M3 muscarinic receptor in 1321N1 cells and an epitope-tagged M3 receptor expressed in COS7 cells substantially utilize an ADP-ribosylation factor (ARF)-dependent route of PLD activation. This pathway is activated at the plasma membrane but appears to be largely independent of G, phospholipase C, Ca2+ q/11, protein kinase C, tyrosine kinases, and phosphatidyl inositol 3-kinase. We report instead that it involves physical association of ARF with the M3 receptor as demonstrated by co-immunoprecipitation and by in vitro interaction with a glutathione S-transferase fusion protein of the receptors third intracellular loop domain. Experiments with mutant constructs of ARF1/6 and PLD1/2 indicate that the M3 receptor displays a major ARF1-dependent route of PLD1 activation with an additional ARF6-dependent pathway to PLD1 or PLD2. Examples of other G protein-coupled receptors assessed in comparison display alternative pathways of protein kinase C- or ARF6-dependent activation of PLD2.
Neuropharmacology | 2014
Ignacio Viñuela-Fernández; Liting Sun; Helen Jerina; John C. Curtis; Andrew Allchorne; Hayley L. Gooding; Roberta Rosie; Pamela J. Holland; Basak Tas; Rory Mitchell; Susan M. Fleetwood-Walker
Effective relief from chronic hypersensitive pain states remains an unmet need. Here we report the discovery that the TRPM8 ion channel, co-operating with the 5-HT(1B) receptor (5-HT(1B)R) in a subset of sensory afferents, exerts an influence at the spinal cord level to suppress central hypersensitivity in pain processing throughout the central nervous system. Using cell line models, ex vivo rat neural tissue and in vivo pain models, we assessed functional Ca(2+) fluorometric responses, protein:protein interactions, immuno-localisation and reflex pain behaviours, with pharmacological and molecular interventions. We report 5-HT(1B)R expression in many TRPM8-containing afferents and direct interaction of these proteins in a novel multi-protein signalling complex, which includes phospholipase D1 (PLD1). We provide evidence that the 5-HT(1B)R activates PLD1 to subsequently activate PIP 5-kinase and generate PIP2, an allosteric enhancer of TRPM8, achieving a several-fold increase in potency of TRPM8 activation. The enhanced activation responses of synaptoneurosomes prepared from spinal cord and cortical regions of animals with a chronic inflammatory pain state are inhibited by TRPM8 activators that were applied in vivo topically to the skin, an effect potentiated by co-administered 5-HT(1B)R agonists and attenuated by 5-HT(1B)R antagonists, while 5-HT(1B)R agents alone had no detectable effect. Corresponding results are seen when assessing reflex behaviours in inflammatory and neuropathic pain models. Control experiments with alternative receptor/TRP channel combinations reveal no such synergy. Identification of this novel receptor/effector/channel complex and its impact on nociceptive processing give new insights into possible strategies for enhanced analgesia in chronic pain.
Endocrinology | 2000
Melanie S. Johnson; Eve M. Lutz; Christopher J. MacKenzie; W.Bart Wolbers; Derek N. Robertson; Pamela J. Holland; Rory Mitchell
GH3 cells were stably transfected with the wild-type murine GnRH receptor and a clonal cell line selected on the basis of inositol phosphate production and PRL/GH release in response to GnRH. This cell line (wt28) was characterized by [125I]GnRH analog binding, [3H]inositol phosphate response to GnRH, and hormone secretion. We examined the activation of the mitogen-activated protein kinase isoforms, extracellular signal-regulated kinase 1/2 (ERK1/2) and tyrosine kinases in wt28 cells and αT3–1 cells (which express a native GnRH) using specific phospho-ERK1/2 and phosphotyrosine antibodies. Concentration-response and time-course data revealed that a sustained ERK1/2 response was seen only in αT3–1 cells. Furthermore, GnRH-induced tyrosine phosphorylation was detectable in αT3–1 cells, but not in wt28 cells. Activators for several different signaling pathways revealed distinct differences between the cell types. Protein kinase C activation by phorbol 12,13-dibutyrate was very effective inα T3–1 cells at pho...
Biochemical Journal | 2011
Zoe Barclay; Louise Dickson; Derek N. Robertson; Melanie S. Johnson; Pamela J. Holland; Roberta Rosie; Liting Sun; Susan M. Fleetwood-Walker; Eve M. Lutz; Rory Mitchell
The 5-HT2AR (5-hydroxytryptamine-2A receptor) is a GPCR (G-protein-coupled receptor) that is implicated in the actions of hallucinogens and represents a major target of atypical antipsychotic agents. In addition to its classical signalling though PLC (phospholipase C), the receptor can activate several other pathways, including ARF (ADP-ribosylation factor)-dependent activation of PLD (phospholipase D), which appears to be achieved through a mechanism independent of heterotrimeric G-proteins. In the present study we show that wild-type and inactive constructs of PLD1 (but not PLD2) respectively facilitate and inhibit ARF-dependent PLD signalling by the 5-HT2AR. Furthermore we demonstrate that PLD1 specifically co-immunoprecipitates with the receptor and binds to a distal site in GST (glutathione transferase) fusion protein constructs of its C-terminal tail which is distinct from the ARF-interaction site, thereby suggesting the existence of a functional ARF-PLD signalling complex directly associated with this receptor. This reveals the spatial co-ordination of an important GPCR, transducer and effector into a physical complex that is likely to reinforce the impact of receptor activation on a heterotrimeric G-protein-independent signalling pathway. Signalling of this receptor through such non-canonical pathways may be important to its role in particular disorders.
Cellular Signalling | 2003
Melanie S. Johnson; E. M. Lutz; Susan Firbank; Pamela J. Holland; Rory Mitchell
In HEK-293 cells, serotonin (5-hydroxytryptamine, 5-HT) was found to induce cAMP production showing pharmacological characteristics consistent with the 5-HT(7) receptor. The presence of 5-HT(7) (and 5-HT(6)) receptor mRNA was confirmed by RT-PCR. Stable HEK-293 cell lines expressing either wild-type or haemagglutinin (HA)-tagged human 5-HT transporter (SERT) were selected and SERT function was confirmed using [3H]5-HT transport. The presence of SERT caused a 10-fold reduction in the potency of 5-HT-induced cAMP production compared to control cells. Downstream signalling by 5-HT(6/7) receptors could be detected as 5-HT-induced protein kinase A activation and phosphorylation of MAP kinase and CREB using phospho-specific antibodies. SERT inhibitors reversed the reduction in potency of 5-HT-induced cAMP production caused by the presence of SERT, resulting in a concentration-dependent left shift in EC(50) values but also a progressive decrease in the maximal response. Thus, when antidepressants were used to block SERT activity, 5-HT receptor signalling was effectively clamped within a mid-range.
Regulatory Peptides | 2002
E. Ronaldson; Derek N. Robertson; Melanie S. Johnson; Pamela J. Holland; Rory Mitchell; E. M. Lutz
The PAC(1), VPAC(1) and VPAC(2) receptors are members of the secretin (Group II) family of G protein-coupled receptors. All members of this family activate adenylate cyclase and several have also been shown to activate phospholipase C. We have recently reported that the rat VPAC(1), VPAC(2) and PAC(1) receptors activate phospholipase D and that distinct pathways are utilised by two intracellular loop 3 splice variants of PAC(1), one of which is ARF-dependent. Phospholipase D activation by the hop1, but not the null (short), form of the PAC(1) receptor is sensitive to brefeldin A, an inhibitor of GTP exchange at ARF. We have expressed the null and hop1 intracellular loop 3 domains of the human PAC(1) receptor in bacteria as GST-fusion proteins and used them as peptide affinity matrices to determine whether a functional interaction exists between these domains and ARF. Using this GST pull-down assay, we have shown binding of the small G protein ARF6 to the hop1 but not the null domain of this receptor.
Cellular Signalling | 2013
Zoe Barclay; Louise Dickson; Derek N. Robertson; Melanie S. Johnson; Pamela J. Holland; Roberta Rosie; Liting Sun; Helen Jerina; Eve M. Lutz; Susan M. Fleetwood-Walker; Rory Mitchell
The 5-HT2A receptor (5-HT2AR) is implicated in psychotropic changes within the central nervous system (CNS). A number of polymorphisms have been reported in the 5-HT2AR gene; one of these results in a non-synonymous change, H452Y, in the carboxy-terminal tail of the receptor protein. The minor allele (9% occurrence) has been statistically associated with CNS dysfunction such as impaired memory processing and resistance to neuroleptic treatment in schizophrenic patients. We investigated the impact of H452Y mutation of the 5-HT2AR expressed in COS7 cells on distinctly coupled intracellular signalling pathways from the receptor, focusing on the heterotrimeric G protein-independent phospholipase D (PLD) pathway, compared to the conventional Gq/11-linked phospholipase C (PLC) pathway. The H452Y mutation selectively attenuated PLD signalling, which as in the wild-type receptor, was mediated by a molecular complex involving PLD1 docked to the receptors carboxy-terminal tail domain. Co-immunoprecipitation and GST-fusion protein experiments revealed that the H452Y mutation selectively reduced PLD1 binding to the receptor. Experiments with blocking peptides to mimic short sections of the 5-HT2AR tail sequence revealed that the peptide spanning residue 452 strongly reduced PLD but not PLC responses of the receptor. Similar observations were made when assessing both PLD responses and PLD-dependent cellular proliferation elicited by activation of 5-HT2ARs natively expressed in MCF-7 cells. Overall these findings indicate that the H452Y polymorphic variant of the 5-HT2AR displays selective disruption of its PLD signalling pathway. This may potentially play a role in the CNS dysfunction associated with the H452Y allele of the 5-HT2AR.
Molecular Pharmacology | 2003
Derek N. Robertson; Melanie S. Johnson; Louise O. Moggach; Pamela J. Holland; Eve M. Lutz; Rory Mitchell
Endocrinology | 2001
Christopher MacKenzie; Eve M. Lutz; Melanie S. Johnson; Derek N. Robertson; Pamela J. Holland; Rory Mitchell