Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pamela L. Wenzel is active.

Publication


Featured researches published by Pamela L. Wenzel.


Nature | 2009

Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment

Olaia Naveiras; Valentina Nardi; Pamela L. Wenzel; Peter V. Hauschka; Frederic H. Fahey; George Q. Daley

Osteoblasts and endothelium constitute functional niches that support haematopoietic stem cells in mammalian bone marrow. Adult bone marrow also contains adipocytes, the number of which correlates inversely with the haematopoietic activity of the marrow. Fatty infiltration of haematopoietic red marrow follows irradiation or chemotherapy and is a diagnostic feature in biopsies from patients with marrow aplasia. To explore whether adipocytes influence haematopoiesis or simply fill marrow space, we compared the haematopoietic activity of distinct regions of the mouse skeleton that differ in adiposity. Here we show, by flow cytometry, colony-forming activity and competitive repopulation assay, that haematopoietic stem cells and short-term progenitors are reduced in frequency in the adipocyte-rich vertebrae of the mouse tail relative to the adipocyte-free vertebrae of the thorax. In lipoatrophic A-ZIP/F1 ‘fatless’ mice, which are genetically incapable of forming adipocytes, and in mice treated with the peroxisome proliferator-activated receptor-γ inhibitor bisphenol A diglycidyl ether, which inhibits adipogenesis, marrow engraftment after irradiation is accelerated relative to wild-type or untreated mice. These data implicate adipocytes as predominantly negative regulators of the bone-marrow microenvironment, and indicate that antagonizing marrow adipogenesis may enhance haematopoietic recovery in clinical bone-marrow transplantation.


Nature | 2009

Biomechanical forces promote embryonic haematopoiesis

Luigi Adamo; Olaia Naveiras; Pamela L. Wenzel; Shannon McKinney-Freeman; Peter Mack; Jorge Gracia-Sancho; Astrid Suchy-Dicey; Momoko Yoshimoto; M. William Lensch; Mervin C. Yoder; Guillermo García-Cardeña; George Q. Daley

Biomechanical forces are emerging as critical regulators of embryogenesis, particularly in the developing cardiovascular system. After initiation of the heartbeat in vertebrates, cells lining the ventral aspect of the dorsal aorta, the placental vessels, and the umbilical and vitelline arteries initiate expression of the transcription factor Runx1 (refs 3–5), a master regulator of haematopoiesis, and give rise to haematopoietic cells. It remains unknown whether the biomechanical forces imposed on the vascular wall at this developmental stage act as a determinant of haematopoietic potential. Here, using mouse embryonic stem cells differentiated in vitro, we show that fluid shear stress increases the expression of Runx1 in CD41+c-Kit+ haematopoietic progenitor cells, concomitantly augmenting their haematopoietic colony-forming potential. Moreover, we find that shear stress increases haematopoietic colony-forming potential and expression of haematopoietic markers in the para-aortic splanchnopleura/aorta–gonads–mesonephros of mouse embryos and that abrogation of nitric oxide, a mediator of shear-stress-induced signalling, compromises haematopoietic potential in vitro and in vivo. Collectively, these data reveal a critical role for biomechanical forces in haematopoietic development.


Nature | 2009

E2f1–3 switch from activators in progenitor cells to repressors in differentiating cells

Jean Leon Chong; Pamela L. Wenzel; M. Teresa Sáenz-Robles; Vivek Nair; Antoney Ferrey; John P. Hagan; Yorman M. Gomez; Nidhi Sharma; Hui-Zi Chen; Madhu M. Ouseph; Shu Huei Wang; Prashant Trikha; Brian Culp; Louise Mezache; Douglas J. Winton; Owen J. Sansom; Danian Chen; Rod Bremner; Paul G. Cantalupo; Michael L. Robinson; James M. Pipas; Gustavo Leone

In the established model of mammalian cell cycle control, the retinoblastoma protein (Rb) functions to restrict cells from entering S phase by binding and sequestering E2f activators (E2f1, E2f2 and E2f3), which are invariably portrayed as the ultimate effectors of a transcriptional program that commit cells to enter and progress through S phase. Using a panel of tissue-specific cre-transgenic mice and conditional E2f alleles we examined the effects of E2f1, E2f2 and E2f3 triple deficiency in murine embryonic stem cells, embryos and small intestines. We show that in normal dividing progenitor cells E2f1–3 function as transcriptional activators, but contrary to the current view, are dispensable for cell division and instead are necessary for cell survival. In differentiating cells E2f1–3 function in a complex with Rb as repressors to silence E2f targets and facilitate exit from the cell cycle. The inactivation of Rb in differentiating cells resulted in a switch of E2f1–3 from repressors to activators, leading to the superactivation of E2f responsive targets and ectopic cell divisions. Loss of E2f1–3 completely suppressed these phenotypes caused by Rb deficiency. This work contextualizes the activator versus repressor functions of E2f1–3 in vivo, revealing distinct roles in dividing versus differentiating cells and in normal versus cancer-like cell cycles.


Nature | 2009

Division and apoptosis of E2f-deficient retinal progenitors

Danian Chen; Marek Pacal; Pamela L. Wenzel; Paul S. Knoepfler; Gustavo Leone; Rod Bremner

The activating E2f transcription factors (E2f1, E2f2 and E2f3) induce transcription and are widely viewed as essential positive cell cycle regulators. Indeed, they drive cells out of quiescence, and the ‘cancer cell cycle’ in Rb1 null cells is E2f-dependent. Absence of activating E2fs in flies or mammalian fibroblasts causes cell cycle arrest, but this block is alleviated by removing repressive E2f or the tumour suppressor p53, respectively. Thus, whether activating E2fs are indispensable for normal division is an area of debate. Activating E2fs are also well known pro-apoptotic factors, providing a defence against oncogenesis, yet E2f1 can limit irradiation-induced apoptosis. In flies this occurs through repression of hid (also called Wrinkled; Smac/Diablo in mammals). However, in mammals the mechanism is unclear because Smac/Diablo is induced, not repressed, by E2f1, and in keratinocytes survival is promoted indirectly through induction of DNA repair targets. Thus, a direct pro-survival function for E2f1–3 and/or its relevance beyond irradiation has not been established. To address E2f1–3 function in normal cells in vivo we focused on the mouse retina, which is a relatively simple central nervous system component that can be manipulated genetically without compromising viability and has provided considerable insight into development and cancer. Here we show that unlike fibroblasts, E2f1–3 null retinal progenitor cells or activated Müller glia can divide. We attribute this effect to functional interchangeability with Mycn. However, loss of activating E2fs caused downregulation of the p53 deacetylase Sirt1, p53 hyperacetylation and elevated apoptosis, establishing a novel E2f–Sirt1–p53 survival axis in vivo. Thus, activating E2fs are not universally required for normal mammalian cell division, but have an unexpected pro-survival role in development.


Developmental Cell | 2012

Atypical E2F Repressors and Activators Coordinate Placental Development

Madhu M. Ouseph; Jing Li; Hui-Zi Chen; Thierry Pécot; Pamela L. Wenzel; John C. Thompson; Grant Comstock; Veda Chokshi; Morgan Byrne; Braxton Forde; Jean Leon Chong; Kun Huang; Raghu Machiraju; Alain de Bruin; Gustavo Leone

The evolutionarily ancient arm of the E2f family of transcription factors consisting of the two atypical members E2f7 and E2f8 is essential for murine embryonic development. However, the critical tissues, cellular processes, and molecular pathways regulated by these two factors remain unknown. Using a series of fetal and placental lineage-specific cre mice, we show that E2F7/E2F8 functions in extraembryonic trophoblast lineages are both necessary and sufficient to carry fetuses to term. Expression profiling and biochemical approaches exposed the canonical E2F3a activator as a key family member that antagonizes E2F7/E2F8 functions. Remarkably, the concomitant loss of E2f3a normalized placental gene expression programs, corrected placental defects, and fostered the survival of E2f7/E2f8-deficient embryos to birth. In summary, we identified a placental transcriptional network tightly coordinated by activation and repression through two distinct arms of the E2F family that is essential for extraembryonic cell proliferation, placental development, and fetal viability.


Developmental Biology | 2011

Cell proliferation in the absence of E2F1-3

Pamela L. Wenzel; Jean Leon Chong; M. Teresa Sáenz-Robles; Antoney Ferrey; John P. Hagan; Yorman M. Gomez; Ravi Rajmohan; Nidhi Sharma; Hui-Zi Chen; James M. Pipas; Michael L. Robinson; Gustavo Leone

E2F transcription factors regulate the progression of the cell cycle by repression or transactivation of genes that encode cyclins, cyclin dependent kinases, checkpoint regulators, and replication proteins. Although some E2F functions are independent of the Retinoblastoma tumor suppressor (Rb) and related family members, p107 and p130, much of E2F-mediated repression of S phase entry is dependent upon Rb. We previously showed in cultured mouse embryonic fibroblasts that concomitant loss of three E2F activators with overlapping functions (E2F1, E2F2, and E2F3) triggered the p53-p21(Cip1) response and caused cell cycle arrest. Here we report on a dramatic difference in the requirement for E2F during development and in cultured cells by showing that cell cycle entry occurs normally in E2f1-3 triply-deficient epithelial stem cells and progenitors of the developing lens. Sixteen days after birth, however, massive apoptosis in differentiating epithelium leads to a collapse of the entire eye. Prior to this collapse, we find that expression of cell cycle-regulated genes in E2F-deficient lenses is aberrantly high. In a second set of experiments, we demonstrate that E2F3 ablation alone does not cause abnormalities in lens development but rescues phenotypic defects caused by loss of Rb, a binding partner of E2F known to recruit histone deacetylases, SWI/SNF and CtBP-polycomb complexes, methyltransferases, and other co-repressors to gene promoters. Together, these data implicate E2F1-3 in mediating transcriptional repression by Rb during cell cycle exit and point to a critical role for their repressive functions in cell survival.


Medical Imaging 2006: Image Processing | 2006

Registration and 3D visualization of large microscopy images

Kishore Mosaliganti; Tony Pan; Richard Sharp; Randall Ridgway; Srivathsan Iyengar; Alexandra Gulacy; Pamela L. Wenzel; Alain de Bruin; Raghu Machiraju; Kun Huang; Gustavo Leone; Joel H. Saltz

Inactivation of the retinoblastoma gene in mouse embryos causes tissue infiltrations into critical sections of the placenta, which has been shown to affect fetal survivability. Our collaborators in cancer genetics are extremely interested in examining the three dimensional nature of these infiltrations given a stack of two dimensional light microscopy images. Three sets of wildtype and mutant placentas was sectioned serially and digitized using a commercial light microscopy scanner. Each individual placenta dataset consisted of approximately 1000 images totaling 700 GB in size, which were registered into a volumetric dataset using National Library of Medicines (NIH/NLM) Insight Segmentation and Registration Toolkit (ITK). This paper describes our method for image registration to aid in volume visualization of tissue level intermixing for both wildtype and Rb- specimens. The registration process faces many challenges arising from the large image sizes, damages during sectioning, staining gradients both within and across sections, and background noise. These issues limit the direct application of standard registration techniques due to frequent convergence to local solutions. In this work, we develop a mixture of automated and semi-automated enhancements with ground-truth validation for the mutual information-based registration algorithm. Our final volume renderings clearly show tissue intermixing differences between both wildtype and Rb- specimens which are not obvious prior to registration.


Developmental Cell | 2014

Effect of Developmental Stage of HSC and Recipient on Transplant Outcomes

Natasha Arora; Pamela L. Wenzel; Shannon McKinney-Freeman; Samantha J. Ross; Peter Geon Kim; Stephanie S. Chou; Momoko Yoshimoto; Mervin C. Yoder; George Q. Daley

The first hematopoietic stem cells (HSCs) that engraft irradiated adult mice arise in the aorta-gonad-mesonephros (AGM) on embryonic day 11.5 (E11.5). However, at this stage, there is a discrepancy between the apparent frequency of HSCs depicted with imaging and their rarity when measured with limiting dilution transplant. We have attempted to reconcile this difference using neonatal recipients, which are more permissive for embryonic HSC engraftment. We found that embryonic HSCs from E9.5 and E10.5 preferentially engrafted neonates, whereas developmentally mature, definitive HSCs from E14.5 fetal liver or adult bone marrow (BM) more robustly engrafted adults. Neonatal engraftment was enhanced after treating adult BM-derived HSCs with interferon. Adult BM-derived HSCs preferentially homed to the liver in neonatal mice yet showed balanced homing to the liver and spleen in adults. These findings emphasize the functional differences between nascent and mature definitive HSCs.


Blood | 2015

Notch1 acts via Foxc2 to promote definitive hematopoiesis via effects on hemogenic endothelium

Il Ho Jang; Yi Fen Lu; Long Zhao; Pamela L. Wenzel; Tsutomu Kume; Sumon Datta; Natasha Arora; Jordi Guiu; Mounia Lagha; Peter Geon Kim; Eun Kyoung Do; Jae Ho Kim; Thorsten M. Schlaeger; Leonard I. Zon; Anna Bigas; Caroline E. Burns; George Q. Daley

Hematopoietic and vascular development share many common features, including cell surface markers and sites of origin. Recent lineage-tracing studies have established that definitive hematopoietic stem and progenitor cells arise from vascular endothelial-cadherin(+) hemogenic endothelial cells of the aorta-gonad-mesonephros region, but the genetic programs underlying the specification of hemogenic endothelial cells remain poorly defined. Here, we discovered that Notch induction enhances hematopoietic potential and promotes the specification of hemogenic endothelium in differentiating cultures of mouse embryonic stem cells, and we identified Foxc2 as a highly upregulated transcript in the hemogenic endothelial population. Studies in zebrafish and mouse embryos revealed that Foxc2 and its orthologs are required for the proper development of definitive hematopoiesis and function downstream of Notch signaling in the hemogenic endothelium. These data establish a pathway linking Notch signaling to Foxc2 in hemogenic endothelial cells to promote definitive hematopoiesis.


Nature Communications | 2017

Fluid shear stress activates YAP1 to promote cancer cell motility.

Hyun Jung Lee; Miguel F. Diaz; Katherine M. Price; Joyce A. Ozuna; Songlin Zhang; Eva M. Sevick-Muraca; John P. Hagan; Pamela L. Wenzel

Mechanical stress is pervasive in egress routes of malignancy, yet the intrinsic effects of force on tumour cells remain poorly understood. Here, we demonstrate that frictional force characteristic of flow in the lymphatics stimulates YAP1 to drive cancer cell migration; whereas intensities of fluid wall shear stress (WSS) typical of venous or arterial flow inhibit taxis. YAP1, but not TAZ, is strictly required for WSS-enhanced cell movement, as blockade of YAP1, TEAD1-4 or the YAP1–TEAD interaction reduces cellular velocity to levels observed without flow. Silencing of TEAD phenocopies loss of YAP1, implicating transcriptional transactivation function in mediating force-enhanced cell migration. WSS dictates expression of a network of YAP1 effectors with executive roles in invasion, chemotaxis and adhesion downstream of the ROCK–LIMK–cofilin signalling axis. Altogether, these data implicate YAP1 as a fluid mechanosensor that functions to regulate genes that promote metastasis.

Collaboration


Dive into the Pamela L. Wenzel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kun Huang

Ohio State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miguel F. Diaz

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge