Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pamela Villalobos is active.

Publication


Featured researches published by Pamela Villalobos.


Nature | 2016

XPO1-dependent nuclear export is a druggable vulnerability in KRAS-mutant lung cancer

Jimi Kim; Elizabeth McMillan; Hyunseok Kim; Niranjan Venkateswaran; Gurbani Makkar; Jaime Rodriguez-Canales; Pamela Villalobos; Jasper Edgar Neggers; Saurabh Mendiratta; Shuguang Wei; Yosef Landesman; William Senapedis; Erkan Baloglu; Chi-Wan B. Chow; Robin E. Frink; Boning Gao; Michael G. Roth; John D. Minna; Dirk Daelemans; Ignacio I. Wistuba; Bruce A. Posner; Pier Paolo Scaglioni; Michael A. White

The common participation of oncogenic KRAS proteins in many of the most lethal human cancers, together with the ease of detecting somatic KRAS mutant alleles in patient samples, has spurred persistent and intensive efforts to develop drugs that inhibit KRAS activity. However, advances have been hindered by the pervasive inter- and intra-lineage diversity in the targetable mechanisms that underlie KRAS-driven cancers, limited pharmacological accessibility of many candidate synthetic-lethal interactions and the swift emergence of unanticipated resistance mechanisms to otherwise effective targeted therapies. Here we demonstrate the acute and specific cell-autonomous addiction of KRAS-mutant non-small-cell lung cancer cells to receptor-dependent nuclear export. A multi-genomic, data-driven approach, utilizing 106 human non-small-cell lung cancer cell lines, was used to interrogate 4,725 biological processes with 39,760 short interfering RNA pools for those selectively required for the survival of KRAS-mutant cells that harbour a broad spectrum of phenotypic variation. Nuclear transport machinery was the sole process-level discriminator of statistical significance. Chemical perturbation of the nuclear export receptor XPO1 (also known as CRM1), with a clinically available drug, revealed a robust synthetic-lethal interaction with native or engineered oncogenic KRAS both in vitro and in vivo. The primary mechanism underpinning XPO1 inhibitor sensitivity was intolerance to the accumulation of nuclear IκBα (also known as NFKBIA), with consequent inhibition of NFκB transcription factor activity. Intrinsic resistance associated with concurrent FSTL5 mutations was detected and determined to be a consequence of YAP1 activation via a previously unappreciated FSTL5–Hippo pathway regulatory axis. This occurs in approximately 17% of KRAS-mutant lung cancers, and can be overcome with the co-administration of a YAP1–TEAD inhibitor. These findings indicate that clinically available XPO1 inhibitors are a promising therapeutic strategy for a considerable cohort of patients with lung cancer when coupled to genomics-guided patient selection and observation.


Nature | 2017

CPS1 maintains pyrimidine pools and DNA synthesis in KRAS/LKB1-mutant lung cancer cells

Jiyeon Kim; Zeping Hu; Ling Cai; Kailong Li; Eunhee Choi; Brandon Faubert; Divya Bezwada; Jaime Rodriguez-Canales; Pamela Villalobos; Yu Fen Lin; Min Ni; Kenneth Huffman; Luc Girard; Lauren Averett Byers; Keziban Unsal-Kacmaz; Christopher G. Peña; John V. Heymach; Els Wauters; Johan Vansteenkiste; Diego H. Castrillon; Benjamin P C Chen; Ignacio I. Wistuba; Diether Lambrechts; Jian Xu; John D. Minna; Ralph J. DeBerardinis

Metabolic reprogramming by oncogenic signals promotes cancer initiation and progression. The oncogene KRAS and tumour suppressor STK11, which encodes the kinase LKB1, regulate metabolism and are frequently mutated in non-small-cell lung cancer (NSCLC). Concurrent occurrence of oncogenic KRAS and loss of LKB1 (KL) in cells specifies aggressive oncological behaviour. Here we show that human KL cells and tumours share metabolomic signatures of perturbed nitrogen handling. KL cells express the urea cycle enzyme carbamoyl phosphate synthetase-1 (CPS1), which produces carbamoyl phosphate in the mitochondria from ammonia and bicarbonate, initiating nitrogen disposal. Transcription of CPS1 is suppressed by LKB1 through AMPK, and CPS1 expression correlates inversely with LKB1 in human NSCLC. Silencing CPS1 in KL cells induces cell death and reduces tumour growth. Notably, cell death results from pyrimidine depletion rather than ammonia toxicity, as CPS1 enables an unconventional pathway of nitrogen flow from ammonia into pyrimidines. CPS1 loss reduces the pyrimidine to purine ratio, compromises S-phase progression and induces DNA-polymerase stalling and DNA damage. Exogenous pyrimidines reverse DNA damage and rescue growth. The data indicate that the KL oncological genotype imposes a metabolic vulnerability related to a dependence on a cross-compartmental pathway of pyrimidine metabolism in an aggressive subset of NSCLC.


Oncogene | 2017

ZEB1 induces LOXL2-mediated collagen stabilization and deposition in the extracellular matrix to drive lung cancer invasion and metastasis

David H. Peng; Christin Ungewiss; Pan Tong; Lauren Averett Byers; Jing Wang; Jaime Rodriguez Canales; Pamela Villalobos; N Uraoka; Barbara Mino; Carmen Behrens; Ignacio I. Wistuba; R I Han; C A Wanna; M Fahrenholtz; K J Grande-Allen; Chad J. Creighton; Don L. Gibbons

Lung cancer is the leading cause of cancer-related deaths, primarily due to distant metastatic disease. Metastatic lung cancer cells can undergo an epithelial-to-mesenchymal transition (EMT) regulated by various transcription factors, including a double-negative feedback loop between the microRNA-200 (miR-200) family and ZEB1, but the precise mechanisms by which ZEB1-dependent EMT promotes malignancy remain largely undefined. Although the cell-intrinsic effects of EMT are important for tumor progression, the reciprocal dynamic crosstalk between mesenchymal cancer cells and the extracellular matrix (ECM) is equally critical in regulating invasion and metastasis. Investigating the collaborative effect of EMT and ECM in the metastatic process reveals increased collagen deposition in metastatic tumor tissues as a direct consequence of amplified collagen gene expression in ZEB1-activated mesenchymal lung cancer cells. In addition, collagen fibers in metastatic lung tumors exhibit greater linearity and organization as a result of collagen crosslinking by the lysyl oxidase (LOX) family of enzymes. Expression of the LOX and LOXL2 isoforms is directly regulated by miR-200 and ZEB1, respectively, and their upregulation in metastatic tumors and mesenchymal cell lines is coordinated to that of collagen. Functionally, LOXL2, as opposed to LOX, is the principal isoform that crosslinks and stabilizes insoluble collagen deposition in tumor tissues. In turn, focal adhesion formation and FAK/SRC signaling is activated in mesenchymal tumor cells by crosslinked collagen in the ECM. Our study is the first to validate direct regulation of LOX and LOXL2 by the miR-200/ZEB1 axis, defines a novel mechanism driving tumor metastasis, delineates collagen as a prognostic marker, and identifies LOXL2 as a potential therapeutic target against tumor progression.


Journal of Clinical Oncology | 2018

Phase I Study of DNX-2401 (Delta-24-RGD) Oncolytic Adenovirus: Replication and Immunotherapeutic Effects in Recurrent Malignant Glioma

Frederick F. Lang; Charles A. Conrad; Candelaria Gomez-Manzano; W. K. Alfred Yung; Raymond Sawaya; Jeffrey S. Weinberg; Sujit S. Prabhu; Ganesh Rao; Gregory N. Fuller; Kenneth D. Aldape; Joy Gumin; Luis Vence; Ignacio I. Wistuba; Jaime Rodriguez-Canales; Pamela Villalobos; Clemens M.F. Dirven; Sonia Tejada; Ricardo Diez Valle; Marta M. Alonso; Brett Ewald; Joanna Peterkin; Frank Tufaro; Juan Fueyo

Purpose DNX-2401 (Delta-24-RGD; tasadenoturev) is a tumor-selective, replication-competent oncolytic adenovirus. Preclinical studies demonstrated antiglioma efficacy, but the effects and mechanisms of action have not been evaluated in patients. Methods A phase I, dose-escalation, biologic-end-point clinical trial of DNX-2401 was conducted in 37 patients with recurrent malignant glioma. Patients received a single intratumoral injection of DNX-2401 into biopsy-confirmed recurrent tumor to evaluate safety and response across eight dose levels (group A). To investigate the mechanism of action, a second group of patients (group B) underwent intratumoral injection through a permanently implanted catheter, followed 14 days later by en bloc resection to acquire post-treatment specimens. Results In group A (n = 25), 20% of patients survived > 3 years from treatment, and three patients had a ≥ 95% reduction in the enhancing tumor (12%), with all three of these dramatic responses resulting in > 3 years of progression-free survival from the time of treatment. Analyses of post-treatment surgical specimens (group B, n = 12) showed that DNX-2401 replicates and spreads within the tumor, documenting direct virus-induced oncolysis in patients. In addition to radiographic signs of inflammation, histopathologic examination of immune markers in post-treatment specimens showed tumor infiltration by CD8+ and T-bet+ cells, and transmembrane immunoglobulin mucin-3 downregulation after treatment. Analyses of patient-derived cell lines for damage-associated molecular patterns revealed induction of immunogenic cell death in tumor cells after DNX-2401 administration. Conclusion Treatment with DNX-2401 resulted in dramatic responses with long-term survival in recurrent high-grade gliomas that are probably due to direct oncolytic effects of the virus followed by elicitation of an immune-mediated antiglioma response.


Cancer Discovery | 2018

STK11/LKB1 Mutations and PD-1 Inhibitor Resistance in KRAS-Mutant Lung Adenocarcinoma

Ferdinandos Skoulidis; Michael E. Goldberg; Danielle Greenawalt; Matthew D. Hellmann; Mark M. Awad; Justin F. Gainor; Alexa B. Schrock; Ryan J. Hartmaier; Sally E. Trabucco; Siraj M. Ali; Julia A. Elvin; Gaurav Singal; Jeffrey S. Ross; David Fabrizio; Peter Szabo; Han Chang; Ariella Sasson; Sujaya Srinivasan; Stefan Kirov; Joseph D. Szustakowski; Patrik Vitazka; Robin Edwards; Jose A. Bufill; Neelesh Sharma; Sai-Hong Ignatius Ou; Nir Peled; David R. Spigel; Hira Rizvi; Elizabeth Jimenez Aguilar; Brett W. Carter

KRAS is the most common oncogenic driver in lung adenocarcinoma (LUAC). We previously reported that STK11/LKB1 (KL) or TP53 (KP) comutations define distinct subgroups of KRAS-mutant LUAC. Here, we examine the efficacy of PD-1 inhibitors in these subgroups. Objective response rates to PD-1 blockade differed significantly among KL (7.4%), KP (35.7%), and K-only (28.6%) subgroups (P < 0.001) in the Stand Up To Cancer (SU2C) cohort (174 patients) with KRAS-mutant LUAC and in patients treated with nivolumab in the CheckMate-057 phase III trial (0% vs. 57.1% vs. 18.2%; P = 0.047). In the SU2C cohort, KL LUAC exhibited shorter progression-free (P < 0.001) and overall (P = 0.0015) survival compared with KRASMUT;STK11/LKB1WT LUAC. Among 924 LUACs, STK11/LKB1 alterations were the only marker significantly associated with PD-L1 negativity in TMBIntermediate/High LUAC. The impact of STK11/LKB1 alterations on clinical outcomes with PD-1/PD-L1 inhibitors extended to PD-L1-positive non-small cell lung cancer. In Kras-mutant murine LUAC models, Stk11/Lkb1 loss promoted PD-1/PD-L1 inhibitor resistance, suggesting a causal role. Our results identify STK11/LKB1 alterations as a major driver of primary resistance to PD-1 blockade in KRAS-mutant LUAC.Significance: This work identifies STK11/LKB1 alterations as the most prevalent genomic driver of primary resistance to PD-1 axis inhibitors in KRAS-mutant lung adenocarcinoma. Genomic profiling may enhance the predictive utility of PD-L1 expression and tumor mutation burden and facilitate establishment of personalized combination immunotherapy approaches for genomically defined LUAC subsets. Cancer Discov; 8(7); 822-35. ©2018 AACR.See related commentary by Etxeberria et al., p. 794This article is highlighted in the In This Issue feature, p. 781.


Applied Immunohistochemistry & Molecular Morphology | 2017

Comparison of Different Antibody Clones for Immunohistochemistry Detection of Programmed Cell Death Ligand 1 (PD-L1) on Non–Small Cell Lung Carcinoma

Edwin R. Parra; Pamela Villalobos; Barbara Mino; Jaime Rodriguez-Canales

Programmed cell death ligand 1 (PD-L1) is a major immune checkpoint protein that mediates antitumor immune suppression and response. Preliminary data suggest that its detection using immunohistochemistry (IHC) in formalin-fixed and paraffin-embedded tissues may predict clinical response to PD-1/PD-L1 therapy. In diagnostic pathology, it is essential to count with a validated IHC that can reliably detect PD-L1-positive cases. The present study was conducted to compare and validate different PD-L1 commercial clones and identify which ones can be reliably used by surgical pathologist to detect PD-L1 expression in human cancer tissues. Eight commercial available PD-L1 clones were tested and compared with a noncommercial PD-L1 antibody clone 5H1. Western blot and IHC using cell lines and human tissues were used to validate these clones. From all PD-L1 antibodies, only the clones E1L3N, E1J2J, SP142, 28-8, 22C3, and SP263 passed the Western blot and IHC validation, providing similar pattern than the clone 5H1 and then they were tested in 259 non–small cell lung cancer cases placed in 9 tissue microarrays. Among all cases, only those with ≥2 cores were included (185 cases). Positive and significant correlation was found between the median PD-L1 H-score in tumor and stroma compartments, for all selected antibodies. Overall, 56 of 185 cases were detected as positive cases in malignant cells expressing membranous PD-L1 by all the clones. However, the clone SP263 identified more PD-L1-positive cases compared with the other clones. Our results show that clones E1L3N, E1J2J, SP142, 28-8, 22C3, and SP263 provide positive membrane staining pattern comparable with clone 5H1. These commercial clones are comparable, but a careful evaluation by the pathologist is necessary to minimize error of positive misinterpretations.


Cancer Research | 2017

PROTOCADHERIN 7 acts through SET and PP2A to potentiate MAPK signaling by EGFR and KRAS during lung tumorigenesis

Xiaorong Zhou; Barrett L. Updegraff; Yabin Guo; Michael Peyton; Luc Girard; Jill E. Larsen; Xian Jin Xie; Yunyun Zhou; Tae Hyun Hwang; Yang Xie; Jaime Rodriguez-Canales; Pamela Villalobos; Carmen Behrens; Ignacio I. Wistuba; John D. Minna; Kathryn A. O'Donnell

Non-small cell lung cancer (NSCLC) is the leading cause of cancer-associated deaths worldwide. Given the efficacy of membrane proteins as therapeutic targets in human malignancies, we examined cell-surface receptors that may act as drivers of lung tumorigenesis. Here, we report that the PROTOCADHERIN PCDH7 is overexpressed frequently in NSCLC tumors where this event is associated with poor clinical outcome. PCDH7 overexpression synergized with EGFR and KRAS to induce MAPK signaling and tumorigenesis. Conversely, PCDH7 depletion suppressed ERK activation, sensitized cells to MEK inhibitors, and reduced tumor growth. PCDH7 potentiated ERK signaling by facilitating interaction of protein phosphatase PP2A with its potent inhibitor, the SET oncoprotein. By establishing an oncogenic role for PCDH7 in lung tumorigenesis, our results provide a rationale to develop novel PCDH7 targeting therapies that act at the cell surface of NSCLC cells to compromise their growth. Cancer Res; 77(1); 187-97. ©2016 AACR.


Scientific Reports | 2018

Development of an Immune-Pathology Informed Radiomics Model for Non-Small Cell Lung Cancer

Chad Tang; Brian P. Hobbs; Ahmed M. Amer; Xiao Li; Carmen Behrens; Jaime Rodriguez Canales; Edwin Roger Parra Cuentas; Pamela Villalobos; David V. Fried; Joe Y. Chang; David S. Hong; James W. Welsh; Boris Sepesi; L Court; Ignacio I. Wistuba; Eugene J. Koay

With increasing use of immunotherapy agents, pretreatment strategies for identifying responders and non-responders is useful for appropriate treatment assignment. We hypothesize that the local immune micro-environment of NSCLC is associated with patient outcomes and that these local immune features exhibit distinct radiologic characteristics discernible by quantitative imaging metrics. We assembled two cohorts of NSCLC patients treated with definitive surgical resection and extracted quantitative parameters from pretreatment CT imaging. The excised primary tumors were then quantified for percent tumor PDL1 expression and density of tumor-infiltrating lymphocyte (via CD3 count) utilizing immunohistochemistry and automated cell counting. Associating these pretreatment radiomics parameters with tumor immune parameters, we developed an immune pathology-informed model (IPIM) that separated patients into 4 clusters (designated A-D) utilizing 4 radiomics features. The IPIM designation was significantly associated with overall survival in both training (5 year OS: 61%, 41%, 50%, and 91%, for clusters A-D, respectively, P = 0.04) and validation (5 year OS: 55%, 72%, 75%, and 86%, for clusters A-D, respectively, P = 0.002) cohorts and immune pathology (all P < 0.05). Specifically, we identified a favorable outcome group characterized by low CT intensity and high heterogeneity that exhibited low PDL1 and high CD3 infiltration, suggestive of a favorable immune activated state. We have developed a NSCLC radiomics signature based on the immune micro-environment and patient outcomes. This manuscript demonstrates model creation and validation in independent cohorts.


Journal of the National Cancer Institute | 2017

Role of CPS1 in cell growth, metabolism, and prognosis in LKB1-inactivated lung adenocarcinoma

Muge Celiktas; Ichidai Tanaka; Satyendra C. Tripathi; Johannes F. Fahrmann; Clemente Aguilar-Bonavides; Pamela Villalobos; Oliver Delgado; Dilsher Dhillon; Jennifer B. Dennison; Edwin J. Ostrin; Hong Wang; Carmen Behrens; Kim Anh Do; Adi F. Gazdar; Samir M. Hanash; Ayumu Taguchi

Background Liver kinase B1 ( LKB1 ) is a tumor suppressor in lung adenocarcinoma (LADC). We investigated the proteomic profiles of 45 LADC cell lines with and without LKB1 inactivation. Carbamoyl phosphate synthetase 1 (CPS1), the first rate-limiting mitochondrial enzyme in the urea cycle, was distinctively overexpressed in LKB1-inactivated LADC cell lines. We therefore assessed the role of CPS1 and its clinical relevance in LKB1-inactivated LADC. Methods Mass spectrometric profiling of proteome and metabolome and function of CPS1 were analyzed in LADC cell lines. CPS1 and LKB1 expression in tumors from 305 LADC and 160 lung squamous cell carcinoma patients was evaluated by immunohistochemistry. Kaplan-Meier and Cox regression analyses were applied to assess the association between overall survival and CPS1 and LKB1 expression. All statistical tests were two-sided. Results CPS1 knockdown reduced cell growth, decreased metabolite levels associated with nucleic acid biosynthesis pathway, and contributed an additive effect when combined with gemcitabine, pemetrexed, or CHK1 inhibitor AZD7762. Tissue microarray analysis revealed that CPS1 was expressed in 65.7% of LKB1-negative LADC, and only 5.0% of LKB1-positive LADC. CPS1 expression showed statistically significant association with poor overall survival in LADC (hazard ratio = 3.03, 95% confidence interval = 1.74 to 5.25, P < .001). Conclusions Our findings suggest functional relevance of CPS1 in LKB1-inactivated LADC and association with worse outcome of LADC. CPS1 is a promising therapeutic target in combination with other chemotherapy agents, as well as a prognostic biomarker, enabling a personalized approach to treatment of LADC.BACKGROUND Liver kinase B1 (LKB1) is a tumor suppressor in lung adenocarcinoma (LADC). We investigated the proteomic profiles of 45 LADC cell lines with and without LKB1 inactivation. Carbamoyl phosphate synthetase 1 (CPS1), the first rate-limiting mitochondrial enzyme in the urea cycle, was distinctively overexpressed in LKB1-inactivated LADC cell lines. We therefore assessed the role of CPS1 and its clinical relevance in LKB1-inactivated LADC. METHODS Mass spectrometric profiling of proteome and metabolome and function of CPS1 were analyzed in LADC cell lines. CPS1 and LKB1 expression in tumors from 305 LADC and 160 lung squamous cell carcinoma patients was evaluated by immunohistochemistry. Kaplan-Meier and Cox regression analyses were applied to assess the association between overall survival and CPS1 and LKB1 expression. All statistical tests were two-sided. RESULTS CPS1 knockdown reduced cell growth, decreased metabolite levels associated with nucleic acid biosynthesis pathway, and contributed an additive effect when combined with gemcitabine, pemetrexed, or CHK1 inhibitor AZD7762. Tissue microarray analysis revealed that CPS1 was expressed in 65.7% of LKB1-negative LADC, and only 5.0% of LKB1-positive LADC. CPS1 expression showed statistically significant association with poor overall survival in LADC (hazard ratio = 3.03, 95% confidence interval = 1.74 to 5.25, P < .001). CONCLUSIONS Our findings suggest functional relevance of CPS1 in LKB1-inactivated LADC and association with worse outcome of LADC. CPS1 is a promising therapeutic target in combination with other chemotherapy agents, as well as a prognostic biomarker, enabling a personalized approach to treatment of LADC.


Oncotarget | 2016

Polo-like kinase 1 inhibition diminishes acquired resistance to epidermal growth factor receptor inhibition in non-small cell lung cancer with T790M mutations

Yuehong Wang; Ratnakar Singh; Liguang Wang; Monique B. Nilsson; Ruchitha Goonatilake; Pan Tong; Lerong Li; Uma Giri; Pamela Villalobos; Barbara Mino; Jaime Rodriguez-Canales; Ignacio I. Wistuba; Jing Wang; John V. Heymach; Faye M. Johnson

Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are effective against non-small cell lung cancer (NSCLC) with activating EGFR mutations, but resistance is inevitable. Mechanisms of acquired resistance include T790M mutations and epithelial–mesenchymal transition (EMT). One potential strategy for overcoming this resistance is the inhibition of polo-like kinase 1 (PLK1) based on our previous studies showing that mesenchymal NSCLC cell lines are more sensitive to PLK1 inhibition than epithelial cell lines. To determine the extent to which PLK1 inhibition overcomes EGFR TKI resistance we measured the effects of the PLK1 inhibitor volasertib alone and in combination with the EGFR inhibitor erlotinib in vitro and in vivo in EGFR mutant NSCLC cell lines with acquired resistance to erlotinib. Two erlotinib-resistant cell lines that underwent EMT had higher sensitivity to volasertib, which caused G2/M arrest and apoptosis, than their parental cells. In all NSCLC cell lines with T790M mutations, volasertib markedly reduced erlotinib resistance. All erlotinib-resistant NSCLC cell lines with T790M mutations had higher sensitivity to erlotinib plus volasertib than to erlotinib alone, and the combination treatment caused G2/M arrest and apoptosis. Compared with either agent alone, the combination treatment also caused significantly more DNA damage and greater reductions in tumor size. Our results suggest that PLK1 inhibition is clinically effective against NSCLC that becomes resistant to EGFR inhibition through EMT or the acquisition of a T790M mutation. These results uncover new functions of PLK1 inhibition in the treatment of NSCLC with acquired resistance to EGFR TKIs.

Collaboration


Dive into the Pamela Villalobos's collaboration.

Top Co-Authors

Avatar

Ignacio I. Wistuba

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jaime Rodriguez-Canales

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Carmen Behrens

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Barbara Mino

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

John D. Minna

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

John V. Heymach

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Xi Liu

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Luc Girard

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Boris Sepesi

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Don L. Gibbons

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge