Panagiota Filippou
Cyprus University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Panagiota Filippou.
Plant Journal | 2012
Georgia Tanou; Panagiota Filippou; Maya Belghazi; Dominique Job; Grigorios Diamantidis; Vasileios Fotopoulos; Athanassios Molassiotis
Reactive oxygen and nitrogen species are involved in a plethora of cellular responses in plants; however, our knowledge on the outcomes of oxidative and nitrosative signaling is still unclear. To better understand how oxidative and nitrosative signals are integrated to regulate cellular adjustments to external conditions, local and systemic responses were investigated in the roots and leaves of sour orange plants (Citrus aurantium L.) after root treatment with hydrogen peroxide (H(2) O(2) ) or sodium nitroprusside (a nitric oxide donor), followed by NaCl stress for 8 days. Phenotypic and physiological data showed that pre-exposure to these treatments induced an acclimation to subsequent salinity stress that was accompanied by both local and systemic H(2) O(2) and nitric oxide (NO) accumulation. Combined histochemical and fluorescent probe approaches showed the existence of a vascular-driven long-distance reactive oxygen species and NO signaling pathway. Transcriptional analysis of genes diagnostic for H(2) O(2) and NO signaling just after treatments or after 8 days of salt stress revealed tissue- and time-specific mechanisms controlling internal H(2) O(2) and NO homeostasis. Furthermore, evidence is presented showing that protein carbonylation, nitration and S-nitrosylation are involved in acclimation to salinity stress. In addition, this work enabled characterization of potential carbonylated, nitrated and nitrosylated proteins with distinct or overlapping signatures. This work provides a framework to better understand the oxidative and nitrosative priming network in citrus plants subjected to salinity conditions.
Plant Cell and Environment | 2014
Georgia Tanou; Vasileios Ziogas; Maya Belghazi; Anastasis Christou; Panagiota Filippou; Dominique Job; Vasileios Fotopoulos; Athanassios Molassiotis
The interplay among polyamines (PAs) and reactive oxygen and nitrogen species (RNS and ROS) is emerging as a key issue in plant responses to salinity. To address this question, we analysed the impact of exogenous PAs [putrescine (Put), spermidine (Spd) and spermine (Spm)] on the oxidative and nitrosative status in citrus plants exposed to salinity. PAs partially reversed the NaCl-induced phenotypic and physiological disturbances. The expression of PA biosynthesis (ADC, SAMDC, SPDS and SPMS) and catabolism (DAO and PAO) genes was systematically up-regulated by PAs. In addition, PAs altered the oxidative status in salt-stressed plants as inferred by changes in ROS production and redox status accompanied by regulation of transcript expression and activities of various antioxidant enzymes. Furthermore, NaCl-induced up-regulation of NO-associated genes, such as NR, NADde, NOS-like and AOX, along with S-nitrosoglutathione reductase and nitrate reductase activities, was partially restored by PAs. Protein carbonylation and tyrosine nitration are depressed by specific PAs whereas protein S-nitrosylation was elicited by all PAs. Furthermore, we identified 271 S-nitrosylated proteins that were commonly or preferentially targeted by salinity and individual PAs. This work helps improve our knowledge on the plants response to environmental challenge.
Plant Signaling & Behavior | 2011
Panagiota Filippou; Chrystalla Antoniou; Vasileios Fotopoulos
Effects of water stress on plants have been well-documented. However, the combined responses to drought and rewatering and their underlying mechanisms are relatively unknown. The present study attempts to describe spatiotemporal alterations in the physiology and cellular status of Medicago truncatula tissues that result from and subsequently follow a period of moderate water deficit. Physiological processes and cellular damage levels were monitored in roots and leaves by determining lipid peroxidation levels, as well as nitric oxide and hydrogen peroxide content, further supported by stomatal conductance and chlorophyll fluorescence measurements in leaves. During water stress, cells in both organs displayed increased damage levels and reactive oxygen and nitrogen species content, while leaves showed reduced stomatal conductance. Furthermore, both tissues demonstrated increased proline content. Upon rewatering, plants recovered displaying readings similar to pre-stress control conditions. Furthermore, molecular analysis of antioxidant gene expression by quantitative real-time RT-PCR revealed differential spatiotemporal regulation in a number of genes examined (including catalase, cytosolic ascorbate peroxidase, copper/zinc and iron superoxide dismutase and alternative oxidase). Overall, M. truncatula plants demonstrated increased sensitivity to drought-induced oxidative damage; however, this was reversed following rewatering indicating a great elasticity in the plant’s capacity to cope with free oxygen radicals.
Free Radical Biology and Medicine | 2013
Panagiota Filippou; Chrystalla Antoniou; Vasileios Fotopoulos
Nitric oxide (NO), polyamines, and proline have all been suggested to play key roles in a wide spectrum of physiological processes and abiotic stress responses. Although exogenous application of polyamines has been shown to induce NO production, the effect of NO on polyamine biosynthesis has not yet been elucidated. Several reports exist that demonstrate the protective action of sodium nitroprusside (SNP), a widely used NO donor, which acts as a signal molecule in plants responsible for the regulation of the expression of many defense-related enzymes. This study attempted to provide a novel insight into the effects of application of low (100 μΜ) and high (2.5 mM) concentrations of SNP on the biosynthesis of two major abiotic stress response-related metabolites, polyamines and proline, in mature (40 day) and senescing (65 day) Medicago truncatula plants. Physiological data showed that long-term (24 h), higher SNP concentration resulted in decreased photosynthetic rate and stomatal conductance followed by intracellular putrescine and proline accumulation, as a result of an increase in biosynthetic arginine decarboxylase (ADC) and Δ(1) -pyrroline-5-carboxylate synthetase (P5CS) enzymatic activity, respectively. Further analysis of polyamine oxidase (PAO)/diamine oxidase (DAO) polyamine catabolic enzymes indicated that DAO enzymatic activity increased significantly in correlation with putrescine accumulation, whereas PAO activity, involved in spermidine/spermine degradation, increased slightly. Moreover, transcriptional analysis of polyamine and proline metabolism genes (P5CS, P5CR, ADC, SPMS, SPDS, SAMDC, PAO, DAO) further supported the obtained data and revealed a complex SNP concentration-, time-, and developmental stage-dependent mechanism controlling endogenous proline and polyamine metabolite production. This is the first report to provide a global analysis leading to a better understanding of the role of the widely used NO donor SNP in the regulation of key stress-related metabolic pathways.
Plant Physiology and Biochemistry | 2013
Vasileios Ziogas; Georgia Tanou; Panagiota Filippou; Grigorios Diamantidis; Miltiadis Vasilakakis; Vasileios Fotopoulos; Athanassios Molassiotis
Nitrosative status has emerged as a key component in plant response to abiotic stress; however, knowledge on its regulation by different environmental conditions remains unclear. The current study focused on nitrosative responses in citrus plants exposed to various abiotic stresses, including continuous light, continuous dark, heat, cold, drought and salinity. Morphological observations and physiological analysis showed that abiotic stress treatments were sensed by citrus plants. Furthermore, it was revealed that nitrosative networks are activated by environmental stress factors in citrus leaves as evidenced by increased nitrite (NO) content along with the release of NO and superoxide anion (O₂⁻) in the vascular tissues. The expression of genes potentially involved in NO production, such as NR, AOX, NADHox, NADHde, PAO and DAO, was affected by the abiotic stress treatments demonstrating that NO-derived nitrosative responses could be regulated by various pathways. In addition, S-nitrosoglutathione reductase (GSNOR) and nitrate reductase (NR) gene expression and enzymatic activity displayed significant changes in response to adverse environmental conditions, particularly cold stress. Peroxynitrite (ONOO⁻) scavenging ability of citrus plants was elicited by continuous light, dark or drought but was suppressed by salinity. In contrast, nitration levels were elevated by salinity and suppressed by continuous light or dark. Finally, S-nitrosylation patterns were enhanced by heat, cold or drought but were suppressed by dark or salinity. These results suggest that the nitrosative response of citrus plants is differentially regulated depending on the stress type and underscore the importance of nitrosative status in plant stress physiology.
Proteomics | 2013
Athanassios Molassiotis; Georgia Tanou; Panagiota Filippou; Vasileios Fotopoulos
Fruit tree crops are agricultural commodities of high economic importance, while fruits also represent one of the most vital components of the human diet. Therefore, a great effort has been made to understand the molecular mechanisms covering fundamental biological processes in fruit tree physiology and fruit biology. Thanks to the development of cutting‐edge “omics” technologies such as proteomic analysis, scientists now have powerful tools to support traditional fruit tree research. Such proteomic analyses are establishing high‐density 2DE reference maps and peptide mass fingerprint databases that can lead fruit science into a new postgenomic research era. Here, an overview of the application of proteomics in key aspects of fruit tree physiology as well as in fruit biology, including defense responses to abiotic and biotic stress factors, is presented. Α panoramic view of ripening‐related proteins is also discussed, as an example of proteomic application in fruit science.
Plant Physiology and Biochemistry | 2012
Panagiota Filippou; Chrystalla Antoniou; Shirisha Yelamanchili; Vasileios Fotopoulos
Nitric oxide (NO) is a bioactive, diffusible molecule involved in a multitude of physiological and developmental processes in plants, which has been reported to display both antioxidant and pro-oxidant properties in plants. Several reports exist highlighting the protective action of sodium nitroprusside (SNP), an NO donor, which demonstrate its important role as a signal molecule in plants responsible for the expression regulation of antioxidant and other defense enzymes. However, the mode of application of this compound varies greatly between studies. The present study provides a comprehensive efficiency comparison of the most commonly used application methods using 2.5mM SNP on mature (40 day) Medicago truncatula plants. Measurement of NO content in both leaves and roots suggests that vacuum infiltration is the most efficient method for NO donation in leaf tissue, whereas hydroponic application resulted in highest NO content in roots. NO content correlated with activity levels of nitrate reductase (NR; EC 1.7.99.4), a key enzyme involved in the generation of NO in plants and which is known to be regulated by NO itself.
Plant Signaling & Behavior | 2013
Chrystalla Antoniou; Panagiota Filippou; Photini V. Mylona; Dionysia A. Fasoula; Ioannis M. Ioannides; Alexios N. Polidoros; Vasileios Fotopoulos
Nitric oxide (NO) is a bioactive molecule involved in numerous biological events that has been reported to display both pro-oxidant and antioxidant properties in plants. Several reports exist which demonstrate the protective action of sodium nitroprusside (SNP), a widely used NO donor, which acts as a signal molecule in plants responsible for the expression regulation of many antioxidant enzymes. This study attempts to provide a novel insight into the effect of application of low (100 μΜ) and high (2.5 mM) concentrations of SNP on the nitrosative status and nitrate metabolism of mature (40 d) and senescing (65 d) Medicago truncatula plants. Higher concentrations of SNP resulted in increased NO content, cellular damage levels and reactive oxygen species (ROS) concentration, further induced in older tissues. Senescing M. truncatula plants demonstrated greater sensitivity to SNP-induced oxidative and nitrosative damage, suggesting a developmental stage-dependent suppression in the plant’s capacity to cope with free oxygen and nitrogen radicals. In addition, measurements of the activity of nitrate reductase (NR), a key enzyme involved in the generation of NO in plants, indicated a differential regulation in a dose and time-dependent manner. Furthermore, expression levels of NO-responsive genes (NR, nitrate/nitrite transporters) involved in nitrogen assimilation and NO production revealed significant induction of NR and nitrate transporter during long-term 2.5 mM SNP application in mature plants and overall gene suppression in senescing plants, supporting the differential nitrosative response of M. truncatula plants treated with different concentrations of SNP.
Archive | 2013
Panagiota Filippou; Georgia Tanou; Athanassios Molassiotis; Vasileios Fotopoulos
Abiotic stress factors represent key elements limiting agricultural productivity worldwide. Increased frequency of extreme environmental events resulting from global climatic changes remarkably influences plant growth and development. Close examination of plant-to-plant communication in nature has revealed the development of unique strategies from plants for responding to abiotic stress, with one of the most interesting being through priming for improved defense responses. The process of priming involves prior exposure to a biotic or abiotic stress factor making a plant more resistant to future exposure. Although the phenomenon has been known for many years, it has only recently been suggested that priming can enhance the resistance of crops to environmental stresses in the field. Priming can also be achieved by applying natural or synthetic compounds which act as signaling transducers, “activating” the plant’s defense system. In this chapter, an up-to-date overview of the literature is presented in terms of some of the main priming agents commonly employed toward induced acclimation of plants to environmental challenges.
Gene | 2014
Anastasis Christou; Egli C. Georgiadou; Panagiota Filippou; George A. Manganaris; Vasileios Fotopoulos
Strawberry plant tissues and particularly fruit material are rich in polysaccharides and polyphenolic compounds, thus rendering the isolation of nucleic acids a difficult task. This work describes the successful modification of a total RNA extraction protocol, which enables the isolation of high quantity and quality of total RNA from small amounts of strawberry leaf, root and fruit tissues. Reverse-transcription polymerase chain reaction (RT-PCR) amplification of GAPDH housekeeping gene from isolated RNA further supports the proposed protocol efficiency and its use for downstream molecular applications. This novel procedure was also successfully followed using other fruit tissues, such as olive and kiwifruit. In addition, optional treatment with RNase A following initial nucleic acid extraction can provide sufficient quality and quality of genomic DNA for subsequent PCR analyses, as evidenced from PCR amplification of housekeeping genes using extracted genomic DNA as template. Overall, this optimized protocol allows easy, rapid and economic isolation of high quality RNA from small amounts of an important fruit crop, such as strawberry, with extended applicability to other recalcitrant fruit crops.