Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Panagiotis Giompres is active.

Publication


Featured researches published by Panagiotis Giompres.


Neuroscience | 2004

Dopamine receptor and transporter levels are altered in the brain of Purkinje Cell Degeneration mutant mice.

Foteini Delis; A. Mitsacos; Panagiotis Giompres

The Purkinje Cell Degeneration (Nna1pcd, pcd) mutant mouse is mainly characterized by the complete, primary loss of the Purkinje cells and the secondary, partial, retrograde loss of the granule and inferior olive neurons and is considered a model of human degenerative ataxia. We determined, by in vitro quantitative autoradiography and in situ hybridization, the effects of the Purkinje cell deprivation on the dopaminergic system of the Nna1pcd mutant mouse. The dopamine transporters, as determined by [3H]WIN35428 binding, were increased compared with wild-type mice in the ventral mesencephalic dopaminergic nuclei and in the lateral striatum, motor cortex and septum. In the cerebellum of Nna1pcd mice, the dopamine transporters showed a significant increase in the deep cerebellar nuclei, but were significantly decreased in the molecular layer. The D1-like receptors, as determined by [3H]SCH23390 binding, increased significantly in the Nna1pcd substantia nigra. The D2/D3 receptors, as determined by [3H]raclopride binding, exhibited a significant decrease in lateral divisions of the striatum. Significant increases in D2-like receptors, as determined by [3H]nemonapride binding, were observed in most divisions of the striatum as well as in septum, hippocampus, and piriform cortex. This D2-like fraction most probably corresponds to the D4 receptor subtype. In the cerebellum of Nna1pcd mice, D2-like receptors were significantly decreased in the molecular layer. The results suggest an increased excitatory input on the dopaminergic mesencephalic neurons and an alteration of the dopaminergic neurotransmission in basal ganglia, cortical and limbic regions of the Nna1pcd mutant mouse. In the cerebellum, the significant downregulation of the dopamine transporters and D2-like receptors in the mutant cerebellar molecular layer is possibly due to the absence of the Purkinje cells.


The Cerebellum | 2005

Dopamine transporters in the cerebellum of mutant mice.

Panagiotis Giompres; Foteini Delis

In the central nervous system, dopamine is known to play a critical role in motor and cognitive functions. Although the cerebellum plays a role in the control of movement and posture and in cognitive functions, it has not been considered to be a dopaminergic region and the dopamine present was thought to represent a precursor of noradrenaline. However, recent evidence suggests that in the cerebellum there is a small dopaminergic element, whose properties are similar to the well characterized system of striatum. In order to better understand the functional role of this system and to delineate its specific interactions within the cerebellum, the distribution and properties of dopamine transporter (DAT) in the cerebellum ofreeler andPurkinje cell degeneration (Nna1pcd) mutant mice, which are characterized by severe loss of different cell populations and abnormalities in synapse formation, have been studied. Kinetic studies revealed that [3H] dopamine is transported into cerebellar synaptosomes prepared from normal mice with affinities similar to that into striatal synaptosomes but with much lower maximal velocities. Inreeler cerebellar synaptosomes the number of transport sites is significantly reduced. InNna1pcd cerebellar synaptosomes the kinetic properties of transport of [3H] dopamine are similar to the normal. However,in vitro quantitative DAT autoradiography revealed a significantly increased binding in cerebellar nuclei, a decreased binding in molecular layer and an unaltered binding in the granule cell layer. These observations confirm a dopaminergic innervation of the cerebellum and contribute to our understanding of the intracerebellar distribution of the dopaminergic system.


Neuroscience | 2014

Sexually dimorphic long-term effects of an early life experience on AMPA receptor subunit expression in rat brain

S. Katsouli; Antonios Stamatakis; Panagiotis Giompres; Elias D. Kouvelas; Fotini Stylianopoulou; A. Mitsacos

Neonatal handling, an experimental model of early life experiences, is known to affect hypothalamic-pituitary-adrenal (HPA) axis function, thus increasing adaptability, coping with stress, cognitive abilities and in general brain plasticity-related processes. AMPA receptors (AMPARs) mediate fast synaptic transmission at excitatory glutamatergic synapses in the CNS and are crucial during neuronal development, synaptic plasticity and structural remodeling. AMPARs are composed of four types of subunits, designated as AMPA glutamate receptor subunits (GluA1, GluA2, GluA3 and GluA4), which combine to form tetramers. The present study addressed the question of whether neonatal handling (15min daily maternal separation from postnatal day 1 (PND1) to PND21) might have an effect on GluA1-4 mRNA levels in adult rat male and female brain using in situ hybridization. We have identified selective sexually dimorphic effects of neonatal handling on the mRNA expression levels of AMPAR subunits in adult rat hippocampus and nuclei of the amygdaloid complex. In the dorsal hippocampus GluA1 mRNA levels were increased in handled males, while they were decreased in handled female animals. In the ventral hippocampus and the amygdaloid complex GluA2 mRNA was lower in handled females, while no effect was observed in handled males. Furthermore, we observed that neonatal handling induced in both sexes decreases of GluA2 mRNA in the dorsal hippocampus, as well as in the somatosensory and occipital cortex, of GluA3 mRNA in most hippocampal areas, amygdaloid complex and cortical regions studied, and of GluA4 mRNA in the ventral hippocampus. These results show that glutamatergic transmission is markedly affected by an early experience. The neonatal handling-induced alterations in AMPAR subunit composition are in line with the increased brain plasticity, the more effective HPA axis function, and in general the more adaptive behavioral phenotype known to characterize the handled animals.


Cns & Neurological Disorders-drug Targets | 2012

Neural Stem Cells Transplanted in a Mouse Model of Parkinson’s Disease Differentiate to Neuronal Phenotypes and Reduce Rotational Deficit

Despina Ziavra; Georgia Makri; Panagiotis Giompres; Stavros Taraviras; Dimitra Thomaidou; Rebecca Matsas; Ada Mitsacos; Elias D. Kouvelas

The most prominent pathological feature in Parkinsons disease (PD) is the progressive and selective loss of mesencephalic dopaminergic neurons of the nigrostriatal tract. The present study was conducted in order to investigate whether naive and or genetically modified neural stem/precursor cells (NPCs) can survive, differentiate and functionally integrate in the lesioned striatum. To this end, stereotaxic injections of 6-OHDA in the right ascending nigrostriatal dopaminergic pathway of mice and subsequent NPC transplantations were performed, followed by apomorphine-induced rotations and double-immunofluorescence experiments. Our results demonstrate that transplanted embryonic NPCs derived from the cortical ventricular zone of E14.5 transgenic mouse embryos expressing the green fluorescent protein (GFP) under control of the beta-actin promoter and cultured as neurospheres can survive in the host striatum for at least three weeks after transplantation. The percentage of surviving GFP-positive cells in the host striatum ranges from 0.2% to 0.6% of the total transplanted NPCs. Grafted cells functionally integrate in the striatum, as indicated by the statistically significant decrease of contralateral rotations after apomorphine treatment. Furthermore, we show that within the striatal environment GFP-positive cells differentiate into beta-III tubulin-expressing neurons, but not glial cells. Most importantly, GFP-positive cells further differentiate to dopaminergic (TH-positive) and medium size spiny (DARPP-32- positive) neuronal phenotypes. Over-expression of the cell cycle exit and neuronal differentiation protein Cend1 in NPCs enhances the generation of GABAergic, but not dopaminergic, neuronal phenotypes after grafting in the lesioned striatum. Our results encourage the development of strategies involving NPC transplantation for the treatment of neurodegenerative diseases.


The Cerebellum | 2008

Pharmacological characterization and anatomical distribution of the dopamine transporter in the mouse cerebellum.

Foteini Delis; Ada Mitsacos; Panagiotis Giompres

We studied the binding parameters, the pharmacological profile and the anatomical distribution of the dopamine transporter in the mouse cerebellum by using the specific dopamine uptake antagonist [3H]GBR12935 and an antidopamine transporter monoclonal antibody. Competition experiments in cerebellar and striatal membrane preparations showed that [3H]GBR12935 binds to a specific binding site, sensitive to dopamine and low concentrations of mazindol. The affinity of dopamine for the cerebellar binding site was one order of magnitude lower than the affinity for the striatal binding site. Saturation experiments in cerebellar membrane preparations and thin frozen sections showed that the affinity of [3H]GBR12935 for this binding site is similar to its affinity for the striatal dopamine transporter. Saturable binding was lobule specific and in general was higher in the molecular layer compared to the granule cell layer. The immunohistochemical signal was mostly concentrated in the Purkinje cell layer and the cerebellar nuclei. The results suggest that the cerebellar dopamine transporter is similar but not identical to the striatal dopamine transporter and that it is present in the mouse cerebellum in a lobule and lamina specific pattern.


Journal of Chemical Neuroanatomy | 2013

Lesion of the cerebellar paravermis increases dopamine D1 receptor levels in the contralateral striatum.

Foteini Delis; Ada Mitsacos; Panagiotis Giompres

Anatomical and biochemical findings have long suggested that a projection from the cerebellum to the basal ganglia exists, and recent findings proposed that the cerebellum influences glutamatergic striatal activity. We have previously shown that a complete, genetic, lack of Purkinje cells induces an upregulation of dopamine D1 receptors (DRD1) in the output of the basal ganglia, the substantia nigra pars reticulata. In this study, we produced a focal unilateral lesion in the cerebellar paravermal cortex and we studied the levels and distribution of dopamine receptors and transporters, with the use of in vitro receptor autoradiography. The lesion produced a statistically significant increase in DRD1 specific binding in the contralateral medial striatum and a bilateral decrease in dopamine transporter (DAT) levels in the dorsolateral striatum. Our finding of a DRD1 increase after disruption of the cerebellar corticonuclear projection suggests that the cerebellar output modulates the basal ganglia DRD1-mediated pathway.


Journal of Neural Transmission | 2010

Modulation of the basal ganglia dopaminergic system in a transgenic mouse exhibiting dystonia-like features

Dimitra Giannakopoulou; Ioanna A. Armata; Ada Mitsacos; Pullani Shashidharan; Panagiotis Giompres

Dystonia is a movement disorder characterized by involuntary excessive muscle activity and abnormal postures. There are data supporting the hypothesis that basal ganglia dysfunction, and specifically dopaminergic system dysfunction, plays a role in dystonia. In the present study, we used hyperkinetic transgenic mice generated as a model of DYT1 dystonia and compared the basal ganglia dopaminergic system between transgenic mice exhibiting hyperkinesia (affected), transgenic mice not showing movement abnormalities (unaffected), and non-transgenic littermates. A decrease in the density of striatal D2 binding sites, measured by [3H]raclopride binding, and D2 mRNA expression in substantia nigra pars compacta (SNpc) was revealed in affected and unaffected transgenic mice when compared with non-transgenic. No difference in D1 receptor binding and DAT binding, measured by [3H]SCH23390 and [3H]WIN35428 binding, respectively, was found in striatum of transgenic animals. In SNpc, increased levels of DAT binding sites were observed in affected and unaffected animals compared to non-transgenic, whereas no change in DAT mRNA expression was found. Our results show selective neurochemical changes in the basal ganglia dopaminergic system, suggesting a possible involvement in the pathophysiology of dystonia-like motor hyperactivity.


Brain Research | 2007

Expression of amino acid receptors and neural peptides in the weaver mouse brain

Kleopatra Fragioudaki; Elias D. Kouvelas; Rosella Cristiani; Panagiotis Giompres; Paola Bagnoli; A. Mitsacos

In the present study, we conducted: (i) in situ hybridization in order to investigate the expression of kainate and GABA(A) receptor subunits and the pre-proenkephalin and prodynorphin peptides in the brain of weaver mouse (a genetic model of dopamine deficiency) and (ii) immunocytochemistry in order to study the somatostatin-positive cells in weaver striatum. Our results indicated: (i) increases in mRNA levels of KA2 and GluR6 kainate receptor subunits, of alpha(4) and beta(3) GABA(A) receptor subunits and of pre-proenkephalin and prodynorphin in 6-month-old weaver striatum; (ii) a decrease in alpha(1) and beta(2) GABA(A) subunit mRNAs in 6-month-old weaver globus pallidus; (iii) increases in KA2, alpha(4) and beta(3) and decreases in alpha(2) and beta(2) mRNAs in the 6-month-old weaver somatosensory cortex; and (iv) an increase in somatostatin-immunopositive cells in 3-month-old weaver striatum. We suggest that: (i) in striatum, the alterations are induced by the induction of the transcription factor DeltafosB (for GluR6, pre-proenkephalin and prodynorphin mRNAs) and the suppression of transcription factors like NGF-IB (nerve growth factor inducible B; for the KA2 mRNA), in response to dopamine depletion; (ii) in striatum and cortex, the alterations in the expression of the GABA(A) subunits indicate an increase of extrasynaptic versus a decrease of synaptic GABA(A) receptors; and (iii) in globus pallidus, the increased striatopallidal GABAergic transmission leads to a decrease in the number of GABA(A) receptors. Our results further clarify the regulatory role of dopamine in the expression of amino acid receptors and striatal neuropeptides.


Neuroscience Letters | 2006

Genetically induced retinal degeneration leads to changes in metabotropic glutamate receptor expression

Ioanna A. Armata; Panagiotis Giompres; Adam L. Smith; Kalliopi Stasi; Elias D. Kouvelas; Ada Mitsacos

In the retina, neurotransmission from photoreceptors to ON-cone and rod bipolar cells is sign reversing and mediated by the metabotropic glutamate receptor mGluR6, which converts the light-evoked hyperpolarization of the photoreceptors into depolarization of ON bipolar cells. The Royal College of Surgeons (RCS) rat retina undergoes progressive photoreceptor loss due to a genetic defect in the pigment epithelium cells. The consequences of photoreceptor loss and the concomitant loss of glutamatergic input to second-order retinal neurons on the expression of the metabotropic glutamate receptor was investigated in the RCS rat retina from early stages of photoreceptor degeneration (P17) up to several months after complete rod and cone degeneration (P120). The expression of the gene encoding mGluR6 was studied by in situ hybridization in the retina, using an [(35)S]dATP-labeled oligonucleotide probe. In congenic control and RCS retina, we found mRNA expression of mGluR6 receptor only in the outer half of the inner nuclear layer (INL) on emulsion-coated retinal sections. Quantitative analysis of the hybridization signal obtained from the autoradiographic films revealed decreased expression levels of the mGluR6 mRNA at early stages of photoreceptor degeneration (P17). On the contrary, increased expression levels were observed at late stages of degeneration (P60 and P120) in RCS compared to congenic control retina. In conclusion, our data demonstrate that the metabotropic glutamate receptor-6 mRNA levels are altered in the young and adult RCS rat retina and suggest that the genetically induced degeneration of photoreceptors affects the expression of this receptor by the INL retinal neurons.


The International Journal of Neuropsychopharmacology | 2015

Behavioral and Neurochemical Changes in Mesostriatal Dopaminergic Regions of the Rat after Chronic Administration of the Cannabinoid Receptor Agonist WIN55,212-2

Eleni Fanarioti; Maria Mavrikaki; George Panagis; Ada Mitsacos; George G. Nomikos; Panagiotis Giompres

Background: The endocannabinoid system interacts extensively with other neurotransmitter systems and has been implicated in a variety of functions, including regulation of basal ganglia circuits and motor behavior. The present study examined the effects of repeated administration of the nonselective cannabinoid receptor 1 agonist WIN55,212-2 on locomotor activity and on binding and mRNA levels of dopamine receptors and transporters and GABAA receptors in mesostriatal dopaminergic regions of the rat. Methods: Rats received systemic injections of WIN55,212-2 (0, 0.1, 0.3, or 1mg/kg, intraperitoneally) for 20 consecutive days. Locomotor activity was measured on days 1, 10, and 20. Following the last measurement, rats were euthanized and prepared for in vitro binding and in situ hybridization experiments. Results: Acutely, 0.3 and 1mg/kg of WIN55,212-2 produced hypolocomotion, which was sustained for the next 2 measurements, compared to vehicle. Repeated administration of WIN55,212-2 decreased the mRNA levels of the D2 autoreceptors in substantia nigra and ventral tegmental area and increased D1 receptor mRNA and binding in nucleus accumbens. Furthermore, both dopamine receptor and transporter binding and mRNA levels were decreased in substantia nigra. Moreover, repeated administration of WIN55,212-2 decreased GABAA receptor binding levels in dorsal striatum and substantia nigra. Conclusions: Our data indicate that chronic WIN55,212-2 administration results in sustained effects on locomotor activity, similar to those observed after acute administration, and modulates the dopaminergic and GABAergic systems in a region-, dose-, and neurotransmitter-selective manner

Collaboration


Dive into the Panagiotis Giompres's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Foteini Delis

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Antonios Stamatakis

National and Kapodistrian University of Athens

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge