Panagiotis Papadakis
Sapienza University of Rome
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Panagiotis Papadakis.
Pattern Recognition | 2007
Panagiotis Papadakis; Ioannis Pratikakis; Stavros J. Perantonis; Theoharis Theoharis
We present a 3D shape retrieval methodology based on the theory of spherical harmonics. Using properties of spherical harmonics, scaling and axial flipping invariance is achieved. Rotation normalization is performed by employing the continuous principal component analysis along with a novel approach which applies PCA on the face normals of the model. The 3D model is decomposed into a set of spherical functions which represents not only the intersections of the corresponding surface with rays emanating from the origin but also points in the direction of each ray which are closer to the origin than the furthest intersection point. The superior performance of the proposed methodology is demonstrated through a comparison against state-of-the-art approaches on standard databases.
International Journal of Computer Vision | 2010
Panagiotis Papadakis; Ioannis Pratikakis; Theoharis Theoharis; Stavros J. Perantonis
We present a novel 3D shape descriptor that uses a set of panoramic views of a 3D object which describe the position and orientation of the object’s surface in 3D space. We obtain a panoramic view of a 3D object by projecting it to the lateral surface of a cylinder parallel to one of its three principal axes and centered at the centroid of the object. The object is projected to three perpendicular cylinders, each one aligned with one of its principal axes in order to capture the global shape of the object. For each projection we compute the corresponding 2D Discrete Fourier Transform as well as 2D Discrete Wavelet Transform. We further increase the retrieval performance by employing a local (unsupervised) relevance feedback technique that shifts the descriptor of an object closer to its cluster centroid in feature space. The effectiveness of the proposed 3D object retrieval methodology is demonstrated via an extensive consistent evaluation in standard benchmarks that clearly shows better performance against state-of-the-art 3D object retrieval methods.
eurographics | 2008
Panagiotis Papadakis; Ioannis Pratikakis; Theoharis Theoharis; Georgios Passalis; Stavros J. Perantonis
Abstract We present a novel 3D object retrieval method that relies upon a hybrid descriptor which is composed of 2D features based on depth buffers and 3D features based on spherical harmonics. To compensate for rotation, two alignment methods, namely CPCA and NPCA, are used while compactness is supported via scalar feature quantization to a set of values that is further compressed using Huffman coding. The superior performance of the proposed retrieval methodology is demonstrated through an extensive comparison against state-of-the-art methods on standard datasets.
Engineering Applications of Artificial Intelligence | 2013
Panagiotis Papadakis
Motion planning for unmanned ground vehicles (UGV) constitutes a domain of research where several disciplines meet, ranging from artificial intelligence and machine learning to robot perception and computer vision. In view of the plurality of related applications such as planetary exploration, search and rescue, agriculture, mining and off-road exploration, the aim of the present survey is to review the field of 3D terrain traversability analysis that is employed at a preceding stage as a means to effectively and efficiently guide the task of motion planning. We identify that in the epicenter of all related methodologies, 3D terrain information is used which is acquired from LIDAR, stereo range data, color or other sensory data and occasionally combined with static or dynamic vehicle models expressing the interaction of the vehicle with the terrain. By taxonomizing the various directions that have been explored in terrain perception and analysis, this review takes a step toward agglomerating the dispersed contributions from individual domains by elaborating on a number of key similarities as well as differences, in order to stimulate research in addressing the open challenges and inspire future developments.
Springer Tracts in Advanced Robotics | 2014
Geert-Jan M. Kruijff; Miroslav Janíček; Shanker Keshavdas; Benoit Larochelle; Hendrik Zender; Nanja J. J. M. Smets; Tina Mioch; Mark A. Neerincx; Jurriaan van Diggelen; Francis Colas; Ming Liu; François Pomerleau; Roland Siegwart; Václav Hlaváč; Tomáš Svoboda; T. Petříček; Michal Reinstein; Karel Zimmermann; Fiora Pirri; Mario Gianni; Panagiotis Papadakis; A. Sinha; Patrick Balmer; Nicola Tomatis; Rainer Worst; Thorsten Linder; Hartmut Surmann; V. Tretyakov; S. Corrao; S. Pratzler-Wanczura
The paper describes experience with applying a user-centric design methodology in developing systems for human-robot teaming in Urban Search & Rescue. A human-robot team consists of several robots (rovers/UGVs, microcopter/UAVs), several humans at an off-site command post (mission commander, UGV operators) and one on-site human (UAV operator). This system has been developed in close cooperation with several rescue organizations, and has been deployed in a real-life tunnel accident use case. The human-robot team jointly explores an accident site, communicating using a multi-modal team interface, and spoken dialogue. The paper describes the development of this complex socio-technical system per se, as well as recent experience in evaluating the performance of this system.
international symposium on safety, security, and rescue robotics | 2012
G-J M. Kruijff; Viatcheslav Tretyakov; Thorsten Linder; Fiora Pirri; Mario Gianni; Panagiotis Papadakis; Matia Pizzoli; Arnab Sinha; E. Pianese; S. Corrao; F. Priori; S. Febrini; S. Angeletti
In May 2012, two major earthquakes occurred in the Emilia-Romagna region, Northern Italy, followed by further aftershocks and earthquakes in June 2012. This sequence of earthquakes and shocks caused multiple casualties, and widespread damage to numerous historical buildings in the region. The Italian National Fire Corps deployed disaster response and recovery of people and buildings. In June 2012, they requested the aid of the EU-funded project NIFTi, to assess damage to historical buildings, and cultural artifacts located therein. To this end, NIFTi deployed a team of humans and robots (UGV, UAV) in the red-area of Mirandola, Emilia-Romagna, from Tuesday July 24 until Friday July 27, 2012. The team worked closely together with the members of the Italian National Fire Corps involved in the red area. This paper describes the deployment, and experience.
eurographics | 2009
Alexander Agathos; Ioannis Pratikakis; Panagiotis Papadakis; Stavros J. Perantonis; Phillip N. Azariadis; Nickolas S. Sapidis
Most of the approaches which address the problem of 3D object retrieval, use global descriptors of the objects which fail to consistently compensate for the intra-class variability of articulated objects. In this paper, a retrieval methodology is presented which is based upon a graph-based object representation. This is composed of a meaningful new mesh segmentation along with a graph matching between the graph of the query object and each of the graphs that correspond to the objects of the 3D object database. The graph matching algorithm is based on the Earth Movers Distance (EMD) similarity measure which is calculated using a new ground distance assignment. The superior performance of the proposed methodology is shown after an extensive experimentation comprising alternative descriptors for the constituent components of the 3D object as well as comparison with state of the art retrieval algorithms.
The Visual Computer | 2010
Alexander Agathos; Ioannis Pratikakis; Panagiotis Papadakis; Stavros J. Perantonis; Phillip N. Azariadis; Nickolas S. Sapidis
In this paper, a retrieval methodology for 3D articulated objects is presented that relies upon a graph-based object representation. The methodology is composed of a mesh segmentation stage which creates the Attributed Relation Graph (ARG) of the object along with a graph matching algorithm which matches two ARGs. The graph matching algorithm is based on the Earth Movers Distance (EMD) similarity measure calculated with a new ground distance assignment. The superior performance of the proposed retrieval methodology against state-of-the-art approaches is shown by extensive experimentation that comprise the application of various geometric descriptors representing the components of the 3D objects that become the node attributes of the ARGs as well as alternative mesh segmentation approaches for the extraction of the object parts. The performance evaluation is addressed in both qualitative and quantitative terms.
Robotica | 2013
Arnab Sinha; Panagiotis Papadakis
Safe navigation of robotic vehicles is considered as a key pre-requisite of successful mission operations within highly adverse and unconstrained environments. While there has been extensive research in the perception of positive obstacles, little progress can be accredited to the field of negative obstacles. This paper hypostatizes an elaborative attempt to address the problem of negative obstacle detection and traversability analysis in the form of gaps by processing 3-dimensional range data. The domain of application concerns Urban Search and Rescue scenarios that reflect environments of increased complexity in terms of diverse terrain irregularities. To allow real-time performance and, in turn, timely prevention of unrecoverable robotic states, the proposed approach is based on the application of efficient image morphological operations for noise reduction and border following the detection and grouping of gaps. Furthermore, we reason about gap traversability, a concept that is novel within the field. Traversability assessments are based on features extracted through Principal Component Analysis by exploring the spatial distribution of the interior of the individual gaps or the orientation distribution of the corresponding contour. The proposed approach is evaluated within a realistic scenario of a tunnel car accident site and a challenging outdoor scenario. Using a contemporary Search and Rescue robot, we have performed extensive experiments under various parameter settings that allowed the robot to always detect the real gaps, and either optimally cross over those that were traversable or otherwise avoid them.
VRIPHYS | 2012
Panagiotis Papadakis; Fiora Pirri
Motion planning for robots operating on 3D rough terrain requires the synergy of various robotic capabilities, from sensing and perception to simulation, planning and prediction. In this paper, we focus on the higher level of this pipeline where by means of physics-based simulation and geometric processing we extract the information that is semantically required for an articulated, tracked robot to optimally traverse 3D terrain. We propose a model that quantifies 3D traversability by accounting for intrinsic robot characteristics and articulating capabilities together with terrain characteristics. By building upon a set of generic cost criteria for a given robot state and 3D terrain patch, we augment the traversability cost estimation by: (i) unifying pose stabilization with traversability cost estimation, (ii) introducing new parameters into the problem that have been previously overlooked and (iii) adapting geometric computations to account for the complete 3D robot body and terrain surface. We apply the proposed model on a state-of-the-art Search and Rescue robot by performing a plurality of tests under varying conditions and demonstrate its efficiency and applicability in real-time.