Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Panayiotis Nikolaou is active.

Publication


Featured researches published by Panayiotis Nikolaou.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Near-unity nuclear polarization with an open-source 129Xe hyperpolarizer for NMR and MRI

Panayiotis Nikolaou; Aaron M. Coffey; Laura L. Walkup; Brogan M. Gust; Nicholas Whiting; Hayley Newton; Scott Barcus; Iga Muradyan; Mikayel Dabaghyan; Gregory D. Moroz; Matthew S. Rosen; Samuel Patz; Michael J. Barlow; Eduard Y. Chekmenev; Boyd M. Goodson

Significance Lung diseases comprise the third leading cause of death in the United States and could benefit from new imaging modalities. “Hyperpolarized” xenon-129 can overcome the ordinarily weak MRI signals from low-density species in lung space or dissolved in tissue; however, clinical progress has been slowed by the difficulty in preparing large amounts of hyperpolarized xenon with high magnetization, as well as the cost and limited availability of xenon hyperpolarization devices. We describe a unique low-cost “open-source” xenon “hyperpolarizer,” characterize its ability to produce xenon-129 with high magnetization, and demonstrate its utility for human lung imaging. The exquisite NMR spectral sensitivity and negligible reactivity of hyperpolarized xenon-129 (HP129Xe) make it attractive for a number of magnetic resonance applications; moreover, HP129Xe embodies an alternative to rare and nonrenewable 3He. However, the ability to reliably and inexpensively produce large quantities of HP129Xe with sufficiently high 129Xe nuclear spin polarization (PXe) remains a significant challenge—particularly at high Xe densities. We present results from our “open-source” large-scale (∼1 L/h) 129Xe polarizer for clinical, preclinical, and materials NMR and MRI research. Automated and composed mostly of off-the-shelf components, this “hyperpolarizer” is designed to be readily implementable in other laboratories. The device runs with high resonant photon flux (up to 200 W at the Rb D1 line) in the xenon-rich regime (up to 1,800 torr Xe in 500 cc) in either single-batch or stopped-flow mode, negating in part the usual requirement of Xe cryocollection. Excellent agreement is observed among four independent methods used to measure spin polarization. In-cell PXe values of ∼90%, ∼57%, ∼50%, and ∼30% have been measured for Xe loadings of ∼300, ∼500, ∼760, and ∼1,570 torr, respectively. PXe values of ∼41% and ∼28% (with ∼760 and ∼1,545 torr Xe loadings) have been measured after transfer to Tedlar bags and transport to a clinical 3 T scanner for MR imaging, including demonstration of lung MRI with a healthy human subject. Long “in-bag” 129Xe polarization decay times have been measured (T1 ∼38 min and ∼5.9 h at ∼1.5 mT and 3 T, respectively)—more than sufficient for a variety of applications.


Chemistry: A European Journal | 2015

NMR hyperpolarization techniques for biomedicine.

Panayiotis Nikolaou; Boyd M. Goodson; Eduard Y. Chekmenev

Recent developments in NMR hyperpolarization have enabled a wide array of new in vivo molecular imaging modalities, ranging from functional imaging of the lungs to metabolic imaging of cancer. This Concept article explores selected advances in methods for the preparation and use of hyperpolarized contrast agents, many of which are already at or near the phase of their clinical validation in patients.


Chemistry: A European Journal | 2017

NMR Hyperpolarization Techniques of Gases

Danila A. Barskiy; Aaron M. Coffey; Panayiotis Nikolaou; Dmitry M. Mikhaylov; Boyd M. Goodson; Rosa T. Branca; George J. Lu; Mikhail G. Shapiro; Igor V. Koptyug; Oleg G. Salnikov; Kirill V. Kovtunov; Valerii I. Bukhtiyarov; Matthew S. Rosen; Michael J. Barlow; Shahideh Safavi; Ian P. Hall; Leif Schröder; Eduard Y. Chekmenev

Nuclear spin polarization can be significantly increased through the process of hyperpolarization, leading to an increase in the sensitivity of nuclear magnetic resonance (NMR) experiments by 4-8 orders of magnitude. Hyperpolarized gases, unlike liquids and solids, can often be readily separated and purified from the compounds used to mediate the hyperpolarization processes. These pure hyperpolarized gases enabled many novel MRI applications including the visualization of void spaces, imaging of lung function, and remote detection. Additionally, hyperpolarized gases can be dissolved in liquids and can be used as sensitive molecular probes and reporters. This Minireview covers the fundamentals of the preparation of hyperpolarized gases and focuses on selected applications of interest to biomedicine and materials science.


Journal of Magnetic Resonance | 2009

Generation of laser-polarized xenon using fiber-coupled laser-diode arrays narrowed with integrated volume holographic gratings

Panayiotis Nikolaou; Nicholas Whiting; Neil A. Eschmann; Kathleen E. Chaffee; Boyd M. Goodson; Michael J. Barlow

Volume holographic gratings (VHGs) can be exploited to narrow the spectral output of high-power laser-diode arrays (LDAs) by nearly an order of magnitude, permitting more efficient generation of laser-polarized noble gases for various applications. A approximately 3-fold improvement in (129)Xe nuclear spin polarization, P(Xe), (compared to a conventional LDA) was achieved with the VHG-LDAs center wavelength tuned to a wing of the Rb D(1) line. Additionally, an anomalous dependence of P(Xe) on the xenon density within the OP cell is reported-including high P(Xe) values (>10%) at high xenon partial pressures (approximately 1000 torr).


Journal of Magnetic Resonance | 2011

Interdependence of in-cell xenon density and temperature during Rb/129Xe spin-exchange optical pumping using VHG-narrowed laser diode arrays.

Nicholas Whiting; Panayiotis Nikolaou; Neil A. Eschmann; Boyd M. Goodson; Michael J. Barlow

The (129)Xe nuclear spin polarization (P(Xe)) that can be achieved via spin-exchange optical pumping (SEOP) is typically limited at high in-cell xenon densities ([Xe](cell)), due primarily to corresponding reductions in the alkali metal electron spin polarization (e.g. P(Rb)) caused by increased non-spin-conserving Rb-Xe collisions. While demonstrating the utility of volume holographic grating (VHG)-narrowed lasers for Rb/(129)Xe SEOP, we recently reported [P. Nikolaou et al., JMR 197 (2009) 249] an anomalous dependence of the observed P(Xe) on the in-cell xenon partial pressure (p(Xe)), wherein P(Xe) values were abnormally low at decreased p(Xe), peaked at moderate p(Xe) (~300 torr), and remained surprisingly elevated at relatively high p(Xe) values (>1000 torr). Using in situ low-field (129)Xe NMR, it is shown that the above effects result from an unexpected, inverse relationship between the xenon partial pressure and the optimal cell temperature (T(OPT)) for Rb/(129)Xe SEOP. This interdependence appears to result directly from changes in the efficiency of one or more components of the Rb/(129)Xe SEOP process, and can be exploited to achieve improved P(Xe) with relatively high xenon densities measured at high field (including averaged P(Xe) values of ~52%, ~31%, ~22%, and ~11% at 50, 300, 500, and 2000 torr, respectively).


Journal of Physical Chemistry B | 2014

Multidimensional Mapping of Spin-Exchange Optical Pumping in Clinical-Scale Batch-Mode 129Xe Hyperpolarizers

Panayiotis Nikolaou; Aaron M. Coffey; Kaili Ranta; Laura L. Walkup; Brogan M. Gust; Michael J. Barlow; Matthew S. Rosen; Boyd M. Goodson; Eduard Y. Chekmenev

We present a systematic, multiparameter study of Rb/129Xe spin-exchange optical pumping (SEOP) in the regimes of high xenon pressure and photon flux using a 3D-printed, clinical-scale stopped-flow hyperpolarizer. In situ NMR detection was used to study the dynamics of 129Xe polarization as a function of SEOP-cell operating temperature, photon flux, and xenon partial pressure to maximize 129Xe polarization (PXe). PXe values of 95 ± 9%, 73 ± 4%, 60 ± 2%, 41 ± 1%, and 31 ± 1% at 275, 515, 1000, 1500, and 2000 Torr Xe partial pressure were achieved. These PXe polarization values were separately validated by ejecting the hyperpolarized 129Xe gas and performing low-field MRI at 47.5 mT. It is shown that PXe in this high-pressure regime can be increased beyond already record levels with higher photon flux and better SEOP thermal management, as well as optimization of the polarization dynamics, pointing the way to further improvements in hyperpolarized 129Xe production efficiency.


Analytical Chemistry | 2014

Temperature-Ramped 129Xe Spin-Exchange Optical Pumping

Panayiotis Nikolaou; Aaron M. Coffey; Michael J. Barlow; Matthew S. Rosen; Boyd M. Goodson; Eduard Y. Chekmenev

We describe temperature-ramped spin-exchange optical pumping (TR-SEOP) in an automated high-throughput batch-mode 129Xe hyperpolarizer utilizing three key temperature regimes: (i) “hot”—where the 129Xe hyperpolarization rate is maximal, (ii) “warm”—where the 129Xe hyperpolarization approaches unity, and (iii) “cool”—where hyperpolarized 129Xe gas is transferred into a Tedlar bag with low Rb content (<5 ng per ∼1 L dose) suitable for human imaging applications. Unlike with the conventional approach of batch-mode SEOP, here all three temperature regimes may be operated under continuous high-power (170 W) laser irradiation, and hyperpolarized 129Xe gas is delivered without the need for a cryocollection step. The variable-temperature approach increased the SEOP rate by more than 2-fold compared to the constant-temperature polarization rate (e.g., giving effective values for the exponential buildup constant γSEOP of 62.5 ± 3.7 × 10–3 min–1 vs 29.9 ± 1.2 × 10–3 min–1) while achieving nearly the same maximum %PXe value (88.0 ± 0.8% vs 90.1% ± 0.8%, for a 500 Torr (67 kPa) Xe cell loading—corresponding to nuclear magnetic resonance/magnetic resonance imaging (NMR/MRI) enhancements of ∼3.1 × 105 and ∼2.32 × 108 at the relevant fields for clinical imaging and HP 129Xe production of 3 T and 4 mT, respectively); moreover, the intercycle “dead” time was also significantly decreased. The higher-throughput TR-SEOP approach can be implemented without sacrificing the level of 129Xe hyperpolarization or the experimental stability for automation—making this approach beneficial for improving the overall 129Xe production rate in clinical settings.


Analytical Chemistry | 2014

Temperature-ramped (129)Xe spin-exchange optical pumping.

Panayiotis Nikolaou; Aaron M. Coffey; Michael J. Barlow; Matthew S. Rosen; Boyd M. Goodson; Eduard Y. Chekmenev

We describe temperature-ramped spin-exchange optical pumping (TR-SEOP) in an automated high-throughput batch-mode 129Xe hyperpolarizer utilizing three key temperature regimes: (i) “hot”—where the 129Xe hyperpolarization rate is maximal, (ii) “warm”—where the 129Xe hyperpolarization approaches unity, and (iii) “cool”—where hyperpolarized 129Xe gas is transferred into a Tedlar bag with low Rb content (<5 ng per ∼1 L dose) suitable for human imaging applications. Unlike with the conventional approach of batch-mode SEOP, here all three temperature regimes may be operated under continuous high-power (170 W) laser irradiation, and hyperpolarized 129Xe gas is delivered without the need for a cryocollection step. The variable-temperature approach increased the SEOP rate by more than 2-fold compared to the constant-temperature polarization rate (e.g., giving effective values for the exponential buildup constant γSEOP of 62.5 ± 3.7 × 10–3 min–1 vs 29.9 ± 1.2 × 10–3 min–1) while achieving nearly the same maximum %PXe value (88.0 ± 0.8% vs 90.1% ± 0.8%, for a 500 Torr (67 kPa) Xe cell loading—corresponding to nuclear magnetic resonance/magnetic resonance imaging (NMR/MRI) enhancements of ∼3.1 × 105 and ∼2.32 × 108 at the relevant fields for clinical imaging and HP 129Xe production of 3 T and 4 mT, respectively); moreover, the intercycle “dead” time was also significantly decreased. The higher-throughput TR-SEOP approach can be implemented without sacrificing the level of 129Xe hyperpolarization or the experimental stability for automation—making this approach beneficial for improving the overall 129Xe production rate in clinical settings.


Analytical Chemistry | 2014

Temperature-Ramped 129Xe Spin-ExchangeOptical Pumping

Panayiotis Nikolaou; Aaron M. Coffey; Michael J. Barlow; Matthew S. Rosen; Boyd M. Goodson; Eduard Y. Chekmenev

We describe temperature-ramped spin-exchange optical pumping (TR-SEOP) in an automated high-throughput batch-mode 129Xe hyperpolarizer utilizing three key temperature regimes: (i) “hot”—where the 129Xe hyperpolarization rate is maximal, (ii) “warm”—where the 129Xe hyperpolarization approaches unity, and (iii) “cool”—where hyperpolarized 129Xe gas is transferred into a Tedlar bag with low Rb content (<5 ng per ∼1 L dose) suitable for human imaging applications. Unlike with the conventional approach of batch-mode SEOP, here all three temperature regimes may be operated under continuous high-power (170 W) laser irradiation, and hyperpolarized 129Xe gas is delivered without the need for a cryocollection step. The variable-temperature approach increased the SEOP rate by more than 2-fold compared to the constant-temperature polarization rate (e.g., giving effective values for the exponential buildup constant γSEOP of 62.5 ± 3.7 × 10–3 min–1 vs 29.9 ± 1.2 × 10–3 min–1) while achieving nearly the same maximum %PXe value (88.0 ± 0.8% vs 90.1% ± 0.8%, for a 500 Torr (67 kPa) Xe cell loading—corresponding to nuclear magnetic resonance/magnetic resonance imaging (NMR/MRI) enhancements of ∼3.1 × 105 and ∼2.32 × 108 at the relevant fields for clinical imaging and HP 129Xe production of 3 T and 4 mT, respectively); moreover, the intercycle “dead” time was also significantly decreased. The higher-throughput TR-SEOP approach can be implemented without sacrificing the level of 129Xe hyperpolarization or the experimental stability for automation—making this approach beneficial for improving the overall 129Xe production rate in clinical settings.


Journal of the American Chemical Society | 2014

A 3D-printed high power nuclear spin polarizer.

Panayiotis Nikolaou; Aaron M. Coffey; Laura L. Walkup; Brogan M. Gust; Cristen LaPierre; Edward Koehnemann; Michael J. Barlow; Matthew S. Rosen; Boyd M. Goodson; Eduard Y. Chekmenev

Collaboration


Dive into the Panayiotis Nikolaou's collaboration.

Top Co-Authors

Avatar

Boyd M. Goodson

Southern Illinois University Carbondale

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicholas Whiting

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Brogan M. Gust

Southern Illinois University Carbondale

View shared research outputs
Top Co-Authors

Avatar

Laura L. Walkup

Southern Illinois University Carbondale

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

George J. Lu

California Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge