Panayotis Kyritsis
National and Kapodistrian University of Athens
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Panayotis Kyritsis.
Inorganic Chemistry | 2013
Alexios Grigoropoulos; M. Pissas; Patroklos Papatolis; Vassilis Psycharis; Panayotis Kyritsis; Yiannis Sanakis
The magnetic properties of the mononuclear manganese(III) complex [Mn{(OPPh2)2N}3] are investigated by means of magnetometry and dual-mode X-band electron paramagnetic resonance spectroscopy. Slow relaxation of magnetization is induced in the presence of external magnetic fields.
Dalton Transactions | 2005
Constantinos J. Milios; Panayotis Kyritsis; Catherine P. Raptopoulou; Aris Terzis; Ramon Vicente; Albert Escuer; Spyros P. Perlepes
The use of di-2-pyridyl ketone oxime, (py)2CNOH, in manganese carboxylate chemistry has been investigated. Using a variety of synthetic routes complexes [Mn(O2CPh)2{(py)2CNOH}2].0.25H2O (1.0.25H2O), Mn4(O2CPh)2{(py)2CO2}2{(py)2CNO}2Br2].MeCN (2.MeCN), [Mn4(O2CPh)2{(py)2CO2}2{(py)2CNO}2Cl(2)].2MeCN (3.2MeCN), [Mn4(O2CMe)2{(py)2CO2}2{(py)2CNO}2Br2].2MeCN (4.2MeCN), [Mn4(O2CMe)2{(py)2CO2}2{(py)2CNO}2(NO3)2].MeCN.H2O (5.MeCN.H2O) and [Mn2(O2CCF3)2(hfac)2{(py)2CNOH}2] (6) have been isolated in good yields. Remarkable features of the reactions are the in situ transformation of an amount of (py)2CNOH to yield the coordination dianion, (py)2CO2(2-), of the gem-diol derivative of di-2-pyridyl ketone in 2-5, the coordination of nitrate ligands in 5 although the starting materials are nitrate-free and the incorporation of CF3CO2- ligands 6 in which was prepared from Mn(hfac)(2).3H2O (hfac(-)= hexafluoroacetylacetonate). Complexes 2-4 have completely analogous molecular structures. The centrosymmetric tetranuclear molecule contains two MnII and two MnIII six-coordinate ions held together by four mu-oxygen atoms from the two 3.2211 (py)2CO2(2-) ligands to give the unprecedented [MnII(mu-OR)MnIII(mu-OR)2MnIII(mu-OR)MnII]6+ core consisting of a planar zig-zag array of the four metal ions. Peripheral ligation is provided by two 2.111 (py)2CNO-, two 2.11 PhCO2- and two terminal Br- ligands. The overall molecular structure 5 of is very similar to that of 2-4 except for the X- being chelating NO3-. A tentative reaction scheme was proposed that explains the observed oxime transformation and nitrate generation. The CF3CO2- ligand is one of the decomposition products of the hfac- ligand. The two Mn(II) ions are bridged by two neutral (py)2CNOH ligands which adopt the 2.0111 coordination mode. A chelating hfac- ligand and a terminal CF3CO2- ion complete a distorted octahedral geometry at each metal ion. The CV of complex reveals irreversible reduction and oxidation processes. Variable-temperature magnetic susceptibility studies in the 2-300 K range for the representative tetranuclear clusters 2 and 4 reveal weak antiferromagnetic exchange interactions, leading to non-magnetic ST = 0 ground states. Best-fit parameters obtained by means of the program CLUMAG and applying the appropriate Hamiltonian are J(Mn(II)Mn((III))=-1.7 (2), -1.5 (4) cm(-1) and J(Mn(III)Mn(III))=-3.0 (2, 4) cm(-1).
Inorganic Chemistry | 2010
Dimitrios Maganas; Sergey Milikisyants; Jorrit M. A. Rijnbeek; Silvia Sottini; Nikolaos Levesanos; Panayotis Kyritsis; Edgar J. J. Groenen
Advanced electron paramagnetic resonance (EPR) methods have been employed in the study of two high-spin cobalt(II) complexes, Co[(SPPh(2))(2)N](2) (Co(Ph,Ph)L(2)) and Co[(SPPh(2))(SP(i)Pr(2))N](2) (Co(iPr,Ph)L(2)), in which the bidentate disulfidoimidodiphosphinato ligands make up for a pseudotetrahedral sulfur coordination of the transition metal. The CoS(4) core in the two complexes has slightly different structure, owing to the different peripheral groups (phenyl or isopropyl) bound to the phosphorus atoms. To determine the zero-field splitting, notoriously difficult for high-spin cobalt(II), the two complexes required different approaches. For Co(Ph,Ph)L(2), the study of the X-band EPR spectrum of a single crystal as a function of temperature revealed a nearly axial character of the zero-field splitting (ZFS; E/D approximately -0.05). For Co(iPr,Ph)L(2), the combination of the EPR spectra at 9, 95, and 275 GHz revealed a rhombic character of the ZFS (E/D approximately -0.33). The energy difference between the Kramers doublets in Co(Ph,Ph)L(2) and Co(iPr,Ph)L(2) amounts to 24 cm(-1) and 30 cm(-1), respectively. From the X-band EPR spectra of diamagnetically diluted single crystals at fields up to 2.5 T for Co(Ph,Ph)L(2) and 0.5 T for Co(iPr,Ph)L(2), the effective g tensors and cobalt hyperfine tensors have been determined, including the direction of the principal axes in the cobalt sites. The values of the EPR observables are discussed in relation to the structural characteristics of the first (CoS(4)) and second coordination sphere in the complexes.
Dalton Transactions | 2011
Eleftherios Ferentinos; Dimitrios Maganas; Catherine P. Raptopoulou; Aris Terzis; Vassilis Psycharis; Neil Robertson; Panayotis Kyritsis
The synthesis of the M[(OPPh(2))(SePPh(2))N](2), M = Co (1), Ni (2) complexes was accomplished by metathetical reactions between the corresponding M(II) salts and the deprotonated form of the dichalcogenated imidodiphosphinato ligand [(OPPh(2))(SePPh(2))N](-). X-Ray crystallography revealed a pseudo-tetrahedral MO(2)Se(2) coordination sphere, owing to the asymmetric (O,Se) nature of the chelating ligand. Slow diffusion of the coordinating solvent dimethylformamide into dichloromethane solutions of Ni[(OPPh(2))(SPPh(2))N](2) or 2, afforded the pseudo-octahedral trans-[Ni{(OPPh(2))(EPPh(2))N}(2)(dmf)(2)], E = S (3), Se (4) complexes, respectively. UV-vis spectra provided evidence that, in solution, complexes 3 and 4 revert to the corresponding pseudo-tetrahedral complexes, most likely due to the removal of the dmf molecules from the coordination sphere. The IR spectra of all complexes reflect the structural features observed by X-ray crystallography. The magnetic properties of the S = 3/2 complex 1, as well as the S = 1 complexes 2, 3 and 4, were extensively studied, and the magnitude of their g and zero-field splitting D parameters was estimated. The reported structures establish a structural transformation of tetrahedral to octahedral geometry of Ni(II) complexes bearing asymmetric imidodiphosphinate ligands, upon recrystallization from coordinating solvents. The structural correlations between the Ni(II) coordination spheres are aided by DFT and ab initio multi-configuration MCSCF calculations, which investigate the corresponding interconversion pathways. In addition, the calculations provide descriptions of the bonding interactions in the octahedral Ni(II) complexes, as well as predictions of their D values.
Inorganic Chemistry | 2008
Nikolaos Levesanos; Stuart D. Robertson; Dimitrios Maganas; Catherine P. Raptopoulou; Aris Terzis; Panayotis Kyritsis; Tristram Chivers
The reaction of ((i)Pr 2PE) 2NM.TMEDA (M = Li, E = Se; M = Na, E = Te) with NiBr 2.DME in THF affords Ni[(SeP (i)Pr 2) 2N] 2 as either square-planar (green) or tetrahedral (red) stereoisomers, depending on the recrystallization solvent; the Te analogue is obtained as the square-planar complex Ni[(TeP (i)Pr 2) 2N] 2.
Journal of Biological Chemistry | 1998
Panayotis Kyritsis; Oliver M. Hatzfeld; Thomas A. Link; Jean-Marc Moulis
The 2[4Fe-4S] ferredoxin from Chromatium vinosum arises as one prominent member of a recently defined family of proteins found in very diverse bacteria. The potentiometric circular dichroism titrations of the protein and of several molecular variants generated by site-directed mutagenesis have established that the reduction potentials of the two clusters differ widely by almost 200 mV. This large difference has been confirmed by electrochemical methods, and each redox transition has been assigned to one of the clusters. The unusually low potential center is surprisingly the one that displays a conventional CX 1 X 2CX 3 X 4C (X n , variable amino acid) binding motif and a structural environment similar to that of clusters having less negative potentials. A comparison with other ferredoxins has highlighted factors contributing to the reduction potential of [4Fe-4S] clusters in proteins. (i) The loop between the coordinating cysteines 40 and 49 and the C terminus α-helix of C. vinosum ferredoxin cause a negative, but relatively moderate, shift of ∼60 mV for the nearby cluster. (ii) Very negative potentials, below −600 mV, correlate with the presence of a bulky side chain in positionX 4 of the coordinating triad of cysteines. These findings set the framework in which previous observations on ferredoxins can be better understood. They also shed light onto the possible occurrence and properties of very low potential [4Fe-4S] clusters in less well characterized proteins.
Inorganic Chemistry | 2012
Dimitrios Maganas; Eleftherios Ferentinos; Alexander M. Whyte; Neil Robertson; Vassilis Psycharis; Aris Terzis; Frank Neese; Panayotis Kyritsis
In this work, magnetometry and high-frequency and -field electron paramagnetic resonance spectroscopy (HFEPR) have been employed in order to determine the spin Hamiltonian (SH) parameters of the non-Kramers, S = 1, pseudooctahedral trans-[Ni(II){(OPPh(2))(EPPh(2))N}(2)(sol)(2)] (E = S, Se; sol = DMF, THF) complexes. X-ray crystallographic studies on these compounds revealed a highly anisotropic NiO(4)E(2) coordination environment, as well as subtle structural differences, owing to the nature of the Ni(II)-coordinated solvent molecule or ligand E atoms. The effects of these structural characteristics on the magnetic properties of the complexes were investigated. The accurately HFEPR-determined SH zero-field-splitting (zfs) D and E parameters, along with the structural data, provided the basis for a systematic density functional theory (DFT) and multiconfigurational ab initio computational analysis, aimed at further elucidating the electronic structure of the complexes. DFT methods yielded only qualitatively useful data. However, already entry level ab initio methods yielded good results for the investigated magnetic properties, provided that the property calculations are taken beyond a second-order treatment of the spin-orbit coupling (SOC) interaction. This was achieved by quasi-degenerate perturbation theory, in conjunction with state-averaged complete active space self-consistent-field calculations. The accuracy in the calculated D parameters improves upon recovering dynamic correlation with multiconfigurational ab initio methods, such as the second-order N-electron valence perturbation theory NEVPT2, the difference dedicated configuration interaction, and the spectroscopy-oriented configuration interaction. The calculations showed that the magnitude of D (∼3-7 cm(-1)) in these complexes is mainly dominated by multiple SOC contributions, the origin of which was analyzed in detail. In addition, the observed largely rhombic regime (E/D = 0.16-0.33) is attributed to the highly distorted metal coordination sphere. Of special importance is the insight by this work on the zfs effects of Se coordination to Ni(II). Overall, a combined experimental and theoretical methodology is provided, as a means to probe the electronic structure of octahedral Ni(II) complexes.
Journal of Biological Inorganic Chemistry | 2006
Petros Giastas; Nikos Pinotsis; Georgios Efthymiou; Matthias Wilmanns; Panayotis Kyritsis; Jean-Marc Moulis; Irene M. Mavridis
The structure of the 2[4Fe–4S] ferredoxin (PaFd) from Pseudomonas aeruginosa, which belongs to the Allochromatium vinosum (Alvin) subfamily, has been determined by X-ray crystallography at 1.32-Å resolution, which is the highest up to now for a member of this subfamily of Fds. The main structural features of PaFd are similar to those of AlvinFd. However, the significantly higher resolution of the PaFd structure makes possible a reliable comparison with available high-resolution structures of [4Fe–4S]-containing Fds, in an effort to rationalize the unusual electrochemical properties of Alvin-like Fds. Three major factors contributing to the reduction potential values of [4Fe–4S]2+/+ clusters of Fds, namely, the surface accessibility of the clusters, the N–H···S hydrogen-bonding network, and the volume of the cavities hosting the clusters, are extensively discussed. The volume of the cavities is introduced in the present work for the first time, and can in part explain the very negative potential of cluster I of Alvin-like Fds.
Journal of Biological Inorganic Chemistry | 2001
Rainer Kümmerle; Jacques Gaillard; Panayotis Kyritsis; Jean-Marc Moulis
The semi-classical electron transfer theory has been very successful in describing reactions occurring in biological systems, but the relevant parameters in the case of iron-sulfur proteins remain unknown. The recent discovery that 2[4Fe-4S] proteins homologous to Chromatium vinosum ferredoxin contain clusters with different reduction potentials now gives the opportunity to study the dependence of the intramolecular electron transfer rate between these clusters as a function of the driving force. This work shows how decreasing the reduction potential difference between the clusters by site-directed mutagenesis of C. vinosum ferredoxin modifies the rate of electron hopping between the two redox sites of the protein by measuring the line broadening of selected 1H NMR signals. Beside the shifts of the reduction potentials, no signs of large structural changes or of significant alterations of the intrinsic kinetic parameters among the different variants of C. vinosum ferredoxin have been found. A reorganization energy of less than 0.5 eV was deduced from the dependence of the electron transfer rates with the reduction potential difference. This small value is associated with a weak electronic coupling between the two closely spaced clusters. This set of parameters, determined for the first time in an iron-sulfur protein, may help to explain how efficient vectorial electron transfer occurs with a small driving force in the many enzymatic systems containing a 2[4Fe-4S] domain.
Journal of the American Chemical Society | 2015
Shang-Da Jiang; Dimitrios Maganas; Nikolaos Levesanos; Eleftherios Ferentinos; Sabrina Haas; Komalavalli Thirunavukkuarasu; Martin Dressel; Lapo Bogani; Frank Neese; Panayotis Kyritsis
The high-spin (S = 1) tetrahedral Ni(II) complex [Ni{(i)Pr2P(Se)NP(Se)(i)Pr2}2] was investigated by magnetometry, spectroscopic, and quantum chemical methods. Angle-resolved magnetometry studies revealed the orientation of the magnetization principal axes. The very large zero-field splitting (zfs), D = 45.40(2) cm(-1), E = 1.91(2) cm(-1), of the complex was accurately determined by far-infrared magnetic spectroscopy, directly observing transitions between the spin sublevels of the triplet ground state. These are the largest zfs values ever determined--directly--for a high-spin Ni(II) complex. Ab initio calculations further probed the electronic structure of the system, elucidating the factors controlling the sign and magnitude of D. The latter is dominated by spin-orbit coupling contributions of the Ni ions, whereas the corresponding effects of the Se atoms are remarkably smaller.