Panjaporn Chaichana
Mahidol University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Panjaporn Chaichana.
Virology | 2014
Promsin Masrinoul; Orapim Puiprom; Atsushi Tanaka; Miwa Kuwahara; Panjaporn Chaichana; Kazuyoshi Ikuta; Pongrama Ramasoota; Tamaki Okabayashi
Chikungunya virus (CHIKV) causes an acute clinical illness characterized by sudden high fever, intense joint pain, and skin rash. Recent outbreaks of chikungunya disease in Africa and Asia are a major public health concern; however, there is currently no effective licensed vaccine or specific treatment. This study reported the development of a mouse monoclonal antibody (MAb), CK47, which recognizes domain III within the viral envelope 1 protein and inhibited the viral release process, thereby preventing the production of progeny virus. The MAb had no effect on virus entry and replication processes. Thus, CK47 may be a useful tool for studying the mechanisms underlying CHIKV release and may show potential as a therapeutic agent.
Journal of Clinical Microbiology | 2015
Tamaki Okabayashi; Tadahiro Sasaki; Promsin Masrinoul; Nantarat Chantawat; Sutee Yoksan; Narong Nitatpattana; Sarunyou Chusri; Ronald Enrique Morales Vargas; Marc Grandadam; Paul T. Brey; Soegeng Soegijanto; Kris Cahyo Mulyantno; Siti Churrotin; Tomohiro Kotaki; Oumar Faye; Ousmane Faye; Abdourahmane Sow; Amadou A. Sall; Orapim Puiprom; Panjaporn Chaichana; Takeshi Kurosu; Seiji Kato; Mieko Kosaka; Pongrama Ramasoota; Kazuyoshi Ikuta
ABSTRACT Chikungunya fever is a mosquito-borne disease of key public health importance in tropical and subtropical countries. Although severe joint pain is the most distinguishing feature of chikungunya fever, diagnosis remains difficult because the symptoms of chikungunya fever are shared by many pathogens, including dengue fever. The present study aimed to develop a new immunochromatographic diagnosis test for the detection of chikungunya virus antigen in serum. Mice were immunized with isolates from patients with Thai chikungunya fever, East/Central/South African genotype, to produce mouse monoclonal antibodies against chikungunya virus. Using these monoclonal antibodies, a new diagnostic test was developed and evaluated for the detection of chikungunya virus. The newly developed diagnostic test reacted with not only the East/Central/South African genotype but also with the Asian and West African genotypes of chikungunya virus. Testing of sera from patients suspected to have chikungunya fever in Thailand (n = 50), Laos (n = 54), Indonesia (n = 2), and Senegal (n = 6) revealed sensitivity, specificity, and real-time PCR (RT-PCR) agreement values of 89.4%, 94.4%, and 91.1%, respectively. In our study using serial samples, a new diagnostic test showed high agreement with the RT-PCR within the first 5 days after onset. A rapid diagnostic test was developed using mouse monoclonal antibodies that react with chikungunya virus envelope proteins. The diagnostic accuracy of our test is clinically acceptable for chikungunya fever in the acute phase.
PLOS ONE | 2014
Panjaporn Chaichana; Tamaki Okabayashi; Orapim Puiprom; Mikiko Sasayama; Tadahiro Sasaki; Akifumi Yamashita; Pongrama Ramasoota; Takeshi Kurosu; Kazuyoshi Ikuta
Background The majority of dengue patients infected with any serotype of dengue virus (DENV) are asymptomatic, but the remainder may develop a wide spectrum of clinical symptoms, ranging from mild dengue fever (DF) to severe dengue hemorrhagic fever (DHF). Severe cases occur more often in patients who experience a secondary infection with a different virus serotype. A phenomenon called antibody-dependent enhancement (ADE) has been proposed to explain the onset of these severe cases, but the exact mechanism of ADE remains unclear. Methodology/Principal Finding Virus neutralization and ADE assays were performed using ultracentrifugation supernatants of acute-phase sera from patients with secondary infections or human monoclonal antibodies (HuMAbs) as anti-DENV antibodies. Virus sources included infectious serum-derived viruses from the ultracentrifugation precipitates, laboratory-culture adapted DENV, or recombinant DENVs derived from patient sera. In contrast to the high levels of ADE observed with laboratory virus strains, low ADE was observed with autologous patient-derived viruses, when patient sera were used to provide the antibody component in the ADE assays. Similar results were obtained using samples from DF and DHF patients. Recombinant-viruses derived from DHF patients showed only minor differences in neutralization and ADE activity in the presence of HuMAbs or plasma derived from the same DHF patient. Conclusion/Significance Serum or plasma taken from patients during the acute phase of a secondary infection showed high levels of ADE, but no neutralization activity, when assayed in the presence of laboratory-adapted virus strains. By contrast, serum or plasma from the same patient showed high levels of neutralization activity but failed to induce significant ADE when the assays were performed with autologous virus. These results demonstrate the significance of the virus source when measuring ADE. They also suggest that repeated passage of DENV in cell culture has endowed it with the capacity to induce high levels of ADE.
Infection, Genetics and Evolution | 2013
Orapim Puiprom; Ronald Enrique Morales Vargas; Rutcharin Potiwat; Panjaporn Chaichana; Kazuyoshi Ikuta; Pongrama Ramasoota; Tamaki Okabayashi
The chikungunya virus (CHIKV) is a mosquito-borne virus that has recently re-emerged in several countries. On infection, the first vertebrate cells to come into contact with CHIKV are skin cells; mosquitoes inoculate the virus together with salivary gland protein into host skin while probing and feeding on blood. However, there is little known about the susceptibility of human skin cells to CHIKV infection. To clarify this, we investigated the kinetics of CHIKV in the human keratinocyte cell line, HaCaT. CHIKV actively replicated in HaCaT cells, with virus titers in the supernatant increasing to 2.8 × 10(4) plaque-forming units (PFU) ml(-1) 24h post infection. CHIKV infection suppressed production of interleukin-8 (IL-8) in HaCaT cells. The function of IL-8 is to recruit immune cells to virus-infected sites, a process known as chemotaxis. Furthermore, we assessed the role of mosquito salivary gland protein in CHIKV infections by comparing the levels of CHIKV gene expression and chemokine production in HaCaT cells with and without salivary gland extract (SGE). SGE enhanced both the expression of the CHIKV gene and the suppression effect of CHIKV on IL-8 production. Our data suggest that the HaCaT cell line represents an effective tool for investigating the mechanism of CHIKV transmission and spread in skin cells. At the mosquito bite site, CHIKV works together with SGE to ensure the virus replicates in skin cells and escapes the host immune system by suppression of IL-8 production.
Virus Genes | 2014
Mikiko Sasayama; Surachet Benjathummarak; Norihito Kawashita; Prasert Rukmanee; Suntaree Sangmukdanun; Promsin Masrinoul; Pannamthip Pitaksajjakul; Orapim Puiprom; Pitak Wuthisen; Takeshi Kurosu; Panjaporn Chaichana; Pannamas Maneekan; Kazuyoshi Ikuta; Pongrama Ramasoota; Tamaki Okabayashi; Pratap Singhasivanon; Natthanej Luplertlop
Chikungunya fever (CHIKF) is an acute febrile illness caused by a mosquito-borne alphavirus, chikungunya virus (CHIKV). This disease re-emerged in Kenya in 2004, and spread to the countries in and around the Indian Ocean. The re-emerging epidemics rapidly spread to regions like India and Southeast Asia, and it was subsequently identified in Europe in 2007, probably as a result of importation of chikungunya cases. On the one hand, chikungunya is one of the neglected diseases and has only attracted strong attention during large outbreaks. In 2008–2009, there was a major outbreak of chikungunya fever in Thailand, resulting in the highest number of infections in any country in the region. However, no update of CHIKV circulating in Thailand has been published since 2009. In this study, we examined the viral growth kinetics and sequences of the structural genes derived from CHIKV clinical isolates obtained from the serum specimens of CHIKF-suspected patients in Central Thailand in 2010. We identified the CHIKV harboring two mutations E1-A226V and E2-I211T, indicating that the East, Central, and South African lineage of CHIKV was continuously circulating as an indigenous population in Thailand.
Biologics: Targets & Therapy | 2013
Chonlatip Pipattanaboon; Tadahiro Sasaki; Mitsuhiro Nishimura; Chayanee Setthapramote; Pannamthip Pitaksajjakul; Pornsawan Leaungwutiwong; Kriengsak Limkittikul; Orapim Puiprom; Mikiko Sasayama; Panjaporn Chaichana; Tamaki Okabayashi; Takeshi Kurosu; Kenichiro Ono; Pongrama Ramasoota; Kazuyoshi Ikuta
Background Hybridomas that produce human monoclonal antibodies (HuMAbs) against Dengue virus (DV) had been prepared previously using peripheral blood lymphocytes from patients with DV during the acute and convalescent phases of a secondary infection. Anti-DV envelope glycoprotein (E) 99 clones, anti-DV premembrane protein (prM) 8 clones, and anti-DV nonstructural protein 1 (NS1) 4 clones were derived from four acute-phase patients, and anti-DV E 2 clones, anti-DV prM 2 clones, and anti-DV NS1 8 clones were derived from five convalescent-phase patients. Methods and results In the present study, we examined whether these clones cross-reacted with Japanese encephalitis virus (JEV), which belongs to the same virus family. Forty-six of the above-described 99 (46/99) anti-E, 0/8 anti-prM, and 2/4 anti-NS1 HuMAbs from acute-phase, and 0/2 anti-E, 0/2 anti-prM, and 5/8 anti-NS1 HuMAbs from convalescent-phase showed neutralizing activity against JEV. Thus, most of the anti-E and anti-NS1 (but not the anti-prM) antibodies cross-reacted with JEV and neutralized this virus. Interestingly, 3/46 anti-E HuMAbs derived from acute-phase patients and 3/5 anti-NS1 HuMAbs from convalescent-phase patients showed particularly high neutralizing activity against JEV. Consequently, the HuMAbs showing neutralization against JEV mostly consisted of two populations: one was HuMAbs recognizing DV E and showing neutralization activity against all four DV serotypes (complex-type) and the other was HuMAbs recognizing DV NS1 and showing subcomplex-type cross-reaction with DV. Conclusion Anti-DV E from acute phase (46/99) and anti-DV NS1 (7/12) indicate neutralizing activity against JEV. In particular, three of 46 anti-DV E clones from acute phase and three of five anti-NS1 clones from convalescent phase showed strong neutralizing activity against JEV.
Scientific Reports | 2017
Susanna Dunachie; Kemajittra Jenjaroen; Catherine J. Reynolds; Kathryn Quigley; Ruhena Sergeant; Manutsanun Sumonwiriya; Panjaporn Chaichana; Suchintana Chumseng; Pitchayanant Ariyaprasert; Patricia Lassaux; Louise J. Gourlay; Charuporn Promwong; Prapit Teparrukkul; Direk Limmathurotsakul; Nicholas P. J. Day; Daniel M. Altmann; Rosemary J. Boyton
Melioidosis, caused by Burkholderia pseudomallei, is a potentially lethal infection with no licensed vaccine. There is little understanding of why some exposed individuals have no symptoms, while others rapidly progress to sepsis and death, or why diabetes confers increased susceptibility. We prospectively recruited a cohort of 183 acute melioidosis patients and 21 control subjects from Northeast Thailand and studied immune parameters in the context of survival status and the presence or absence of diabetes. HLA-B*46 (one of the commonest HLA class I alleles in SE Asia) and HLA-C*01 were associated with an increased risk of death (odds ratio 2.8 and 3.1 respectively). Transcriptomic analysis during acute infection in diabetics indicated the importance of interplay between immune pathways including those involved in antigen presentation, chemotaxis, innate and adaptive immunity and their regulation. Survival was associated with enhanced T cell immunity to nine of fifteen immunodominant antigens analysed including AhpC (BPSL2096), BopE (BPSS1525), PilO (BPSS1599), ATP binding protein (BPSS1385) and an uncharacterised protein (BPSL2520). T cell immunity to GroEL (BPSL2697) was specifically impaired in diabetic individuals. This characterization of immunity associated with survival during acute infection offers insights into correlates of protection and a foundation for design of an effective multivalent vaccine.
PLOS Neglected Tropical Diseases | 2017
Panjaporn Chaichana; Narisara Chantratita; Florian Brod; Sirikamon Koosakulnirand; Kemajittra Jenjaroen; Suchintana Chumseng; Manutsanun Sumonwiriya; Mary N. Burtnick; Paul J. Brett; Prapit Teparrukkul; Direk Limmathurotsakul; Nicholas P. J. Day; Susanna Dunachie; T. Eoin West
Background Melioidosis, caused by the flagellated bacterium Burkholderia pseudomallei, is a life-threatening and increasingly recognized emerging disease. Toll-like receptor (TLR) 5 is a germline-encoded pattern recognition receptor to bacterial flagellin. We evaluated the association of a nonsense TLR5 genetic variant that truncates the receptor with clinical outcomes and with immune responses in melioidosis. Methodology/Principal findings We genotyped TLR5 c.1174C>T in 194 acute melioidosis patients in Thailand. Twenty-six (13%) were genotype CT or TT. In univariable analysis, carriage of the c.1174C>T variant was associated with lower 28-day mortality (odds ratio (OR) 0.21, 95% confidence interval (CI) 0.05–0.94, P = 0.04) and with lower 90-day mortality (OR 0.25, 95% CI 0.07–086, P = 0.03). In multivariable analysis adjusting for age, sex, diabetes and renal disease, the adjusted OR for 28-day mortality in carriers of the variant was 0.24 (95% CI 0.05–1.08, P = 0.06); and the adjusted OR for 90-day mortality was 0.27 (95% CI 0.08–0.97, P = 0.04). c.1174C>T was associated with a lower rate of bacteremia (P = 0.04) and reduced plasma levels of IL-10 (P = 0.049) and TNF-α (P < 0.0001). We did not find an association between c.1174C>T and IFN-γ ELISPOT (T-cell) responses (P = 0.49), indirect haemagglutination titers or IgG antibodies to bacterial flagellin during acute melioidosis (P = 0.30 and 0.1, respectively). Conclusions/Significance This study independently confirms the association of TLR5 c.1174C>T with protection against death in melioidosis, identifies lower bacteremia, IL-10 and TNF-α production in carriers of the variant with melioidosis, but does not demonstrate an association of the variant with acute T-cell IFN-γ response, indirect haemagglutination antibody titer, or anti-flagellin IgG antibodies.
American Journal of Tropical Medicine and Hygiene | 2018
Panjaporn Chaichana; Suchintana Chumseng; Direk Limmathurotsakul; Manutsanun Sumonwiriya; Sayan Langla; Premjit Amornchai; Nicholas P. J. Day; Atthanee Jeeyapant; Patpong Rongkard; Susanna Dunachie; Vanaporn Wuthiekanun; Prapit Teparrukkul; Narisara Chantratita; Kemajittra Jenjaroen
Abstract. Melioidosis is a major neglected tropical disease with high mortality, caused by the Gram-negative bacterium Burkholderia pseudomallei (Bp). Microbiological culture remains the gold standard for diagnosis, but a simpler and more readily available test such as an antibody assay is highly desirable. In this study, we conducted a serological survey of blood donors (n = 1,060) and adult melioidosis patients (n = 200) in northeast Thailand to measure the antibody response to Bp using the indirect hemagglutination assay (IHA). We found that 38% of healthy adults (aged 17–59 years) have seropositivity (IHA titer ≥ 1:80). The seropositivity in healthy blood donors was associated with having a declared occupation of rice farmer and with residence in a nonurban area, but not with gender or age. In the melioidosis cohort, the seropositivity rate was higher in adult patients aged between 18 and 45 years (90%, 37/41) compared with those aged ≥ 45 years (68%, 108/159, P = 0.004). The seropositivity rate was significantly higher in people with diabetes (P = 0.008). Seropositivity was associated with decreased mortality on univariable analysis (P = 0.005), but not on multivariable analysis when adjusted for age, diabetes status, preexisting renal disease, and neutrophil count. This study confirms the presence of high background antibodies in an endemic region and demonstrates the limitations of using IHA during acute melioidosis in this population.
Journal of Clinical Microbiology | 2016
Tamaki Okabayashi; Tadahiro Sasaki; Promsin Masrinoul; Nantarat Chantawat; Sutee Yoksan; Narong Nitatpattana; Sarunyou Chusri; Ronald Enrique Morales Vargas; Marc Grandadam; Paul T. Brey; Soegeng Soegijanto; Kris Cahyo Mulyantno; Siti Churrotin; Tomohiro Kotaki; Oumar Faye; Ousmane Faye; Abdourahmane Sow; Amadou A. Sall; Orapim Puiprom; Panjaporn Chaichana; Takeshi Kurosu; Seiji Kato; Mieko Kosaka; Pongrama Ramasoota; Kazuyoshi Ikuta
Volume 53, no. 2, p. [382–388][1], 2015. Page 384, Fig. 1: Incorrect images were mistakenly placed in the second (Thai), fourth (S27), and sixth (SV) columns in the row labeled “Alphavirus Antibody.” The figure should appear as shown below. ![Figure][2] Page 385, Table 2: Several