Pankaj Kumar Arora
Yeungnam University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pankaj Kumar Arora.
Microbial Cell Factories | 2014
Pankaj Kumar Arora; Hanhong Bae
Chlorophenols (CPs) and their derivatives are persistent environmental pollutants which are used in the manufacture of dyes, drugs, pesticides and other industrial products. CPs, which include monochlorophenols, polychlorophenols, chloronitrophenols, chloroaminophenols and chloromethylphenols, are highly toxic to living beings due to their carcinogenic, mutagenic and cytotoxic properties. Several physico-chemical and biological methods have been used for removal of CPs from the environment. Bacterial degradation has been considered a cost-effective and eco-friendly method of removing CPs from the environment. Several bacteria that use CPs as their sole carbon and energy sources have been isolated and characterized. Additionally, the metabolic pathways for degradation of CPs have been studied in bacteria and the genes and enzymes involved in the degradation of various CPs have been identified and characterized. This review describes the biochemical and genetic basis of the degradation of CPs and their derivatives.
Biological Procedures Online | 2016
Ashok Kumar; Kartik Dhar; Shamsher S. Kanwar; Pankaj Kumar Arora
Lipases are industrial biocatalysts, which are involved in several novel reactions, occurring in aqueous medium as well as non-aqueous medium. Furthermore, they are well-known for their remarkable ability to carry out a wide variety of chemo-, regio- and enantio-selective transformations. Lipases have been gained attention worldwide by organic chemists due to their general ease of handling, broad substrate tolerance, high stability towards temperatures and solvents and convenient commercial availability. Most of the synthetic reactions on industrial scale are carried out in organic solvents because of the easy solubility of non-polar compounds. The effect of organic system on their stability and activity may determine the biocatalysis pace. Because of worldwide use of lipases, there is a need to understand the mechanisms behind the lipase-catalyzed reactions in organic solvents. The unique interfacial activation of lipases has always fascinated enzymologists and recently, biophysicists and crystallographers have made progress in understanding the structure-function relationships of these enzymes. The present review describes the advantages of lipase-catalyzed reactions in organic solvents and various effects of organic solvents on their activity.
BMC Genomics | 2015
Tapan Kumar Mohanta; Pankaj Kumar Arora; Nibedita Mohanta; Pratap Parida; Hanhong Bae
BackgroundMitogen Activated Protein Kinase (MAPK) signaling is of critical importance in plants and other eukaryotic organisms. The MAPK cascade plays an indispensible role in the growth and development of plants, as well as in biotic and abiotic stress responses. The MAPKs are constitute the most downstream module of the three tier MAPK cascade and are phosphorylated by upstream MAP kinase kinases (MAPKK), which are in turn are phosphorylated by MAP kinase kinase kinase (MAPKKK). The MAPKs play pivotal roles in regulation of many cytoplasmic and nuclear substrates, thus regulating several biological processes.ResultsA total of 589 MAPKs genes were identified from the genome wide analysis of 40 species. The sequence analysis has revealed the presence of several N- and C-terminal conserved domains. The MAPKs were previously believed to be characterized by the presence of TEY/TDY activation loop motifs. The present study showed that, in addition to presence of activation loop TEY/TDY motifs, MAPKs are also contain MEY, TEM, TQM, TRM, TVY, TSY, TEC and TQY activation loop motifs. Phylogenetic analysis of all predicted MAPKs were clustered into six different groups (group A, B, C, D, E and F), and all predicted MAPKs were assigned with specific names based on their orthology based evolutionary relationships with Arabidopsis or Oryza MAPKs.ConclusionWe conducted global analysis of the MAPK gene family of plants from lower eukaryotes to higher eukaryotes and analyzed their genomic and evolutionary aspects. Our study showed the presence of several new activation loop motifs and diverse conserved domains in MAPKs. Advance study of newly identified activation loop motifs can provide further information regarding the downstream signaling cascade activated in response to a wide array of stress conditions, as well as plant growth and development.
Frontiers in Microbiology | 2015
Pankaj Kumar Arora
Aromatic amines are an important group of industrial chemicals, which are widely used for manufacturing of dyes, pesticides, drugs, pigments, and other industrial products. These compounds have been considered highly toxic to human beings due to their carcinogenic nature. Three groups of aromatic amines have been recognized: monocyclic, polycyclic, and heterocyclic aromatic amines. Bacterial degradation of several monocyclic aromatic amines has been studied in a variety of bacteria, which utilizes monocyclic aromatic amines as their sole source of carbon and energy. Several degradation pathways have been proposed and the related enzymes and genes have also been characterized. Many reviews have been reviewed toxicity of monocyclic aromatic amines; however, there is lack of review on biodegradation of monocyclic aromatic amines. The aim of this review is to summarize bacterial degradation of monocyclic aromatic amines. This review will increase our current understanding of biochemical and molecular basis of bacterial degradation of monocyclic aromatic amines.
Journal of Hazardous Materials | 2015
Pankaj Kumar Arora; Hanhong Bae
Exiguobacterium sp. PMA utilized 4-chloroindole as its sole source of carbon and energy. The effect of initial concentrations of substrate on the 4-chloroindole degradation was studied and observed that strain PMA was capable of degrading 4-chloroindole up to concentration of 0.5mM. The degradation pathway of 4-chloroindole was studied for Exiguobacterium sp. PMA based on metabolites identified by gas chromatography-mass spectrometry. 4-Chloroindole was initially dehalogenated to indole that was further degraded via isatin, anthranilic acid, and salicylic acid. The potential of strain PMA to degrade 4-chloroindole in soil was monitored using soil microcosms, and it was observed that the cells of strain PMA efficiently degraded 4-chloroindole in the soil. The results of microcosm studies show that strain PMA may be used for bioremediation of 4-chloroindole-contaminated sites. This is the first report of the bacterial degradation of 4-chloroindole.
International Journal of Analytical Chemistry | 2014
Pankaj Kumar Arora; Hanhong Bae
Arthrobacter sp. SPG transformed indole completely in the presence of an additional carbon source. High performance liquid chromatography and gas chromatography-mass spectrometry detected indole-3-acetic acid, indole-3-glyoxylic acid, and indole-3-aldehyde as biotransformation products. This is the first report of the formation of indole-3-acetic acid, indole-3-glyoxylic acid, and indole-3-aldehyde from indole by any bacterium.
Frontiers in Microbiology | 2015
Pankaj Kumar Arora; Ashutosh Sharma
Arthrobacter sp. SPG utilized 2-nitrobenzoate as its sole source of carbon and energy and degraded it with accumulation of stoichiometric amounts of nitrite ions. Salicylate and catechol were detected as metabolites of the 2-nitrobenzoate degradation using high performance liquid chromatography and gas chromatography–mass spectrometry. Enzyme activities for 2-nitrobenzoate-2-monooxygenase, salicylate hydroxylase, and catechol-1,2-dioxygenase were detected in the crude extracts of the 2-nitrobenzoate-induced cells of strain SPG. The 2-nitrobenzoate-monooxygenase activity resulted in formation of salicylate and nitrite from 2-nitrobenzoate, whereas salicylate hydroxylase catalyzed the conversion of salicylate to catechol. The ring-cleaving enzyme, catechol-1,2-dioxygenase cleaved catechol to cis,cis-muconic acid. Cells of strain SPG were able to degrade 2-nitrobenzoate in sterile as well as non-sterile soil microcosms. The results of microcosm studies showed that strain SPG degraded more than 90% of 2-nitrobenzoate within 10–12 days. This study clearly shows that Arthrobacter sp. SPG degraded 2-nitrobenzoate via a new pathway with formation of salicylate and catechol as metabolites. Arthrobacter sp. SPG may be used for bioremediation of 2-nitrobenzoate-contaminated sites due to its ability to degrade 2-nitrobenzoate in soil.
Biological Procedures Online | 2014
Pankaj Kumar Arora; Hanhong Bae
Bioinformatics and biodegradation are two primary scientific fields in applied microbiology and biotechnology. The present review describes development of various bioinformatics tools that may be applied in the field of biodegradation. Several databases, including the University of Minnesota Biocatalysis/Biodegradation database (UM-BBD), a database of biodegradative oxygenases (OxDBase), Biodegradation Network-Molecular Biology Database (Bionemo) MetaCyc, and BioCyc have been developed to enable access to information related to biochemistry and genetics of microbial degradation. In addition, several bioinformatics tools for predicting toxicity and biodegradation of chemicals have been developed. Furthermore, the whole genomes of several potential degrading bacteria have been sequenced and annotated using bioinformatics tools.
Microbial Cell Factories | 2014
Pankaj Kumar Arora; Tapan Kumar Mohanta; Alok Srivastava; Hanhong Bae; Vijay Pal Singh
A degradation pathway of 2-chloro-4-aminophenol (2C4AP) was studied in an Arthrobacter sp. SPG that utilized 2C4AP as its sole source of carbon and energy. The 2C4AP degradation was initiated by a 2C4AP-deaminase that catalyzed the conversion of 2C4AP into chlorohydroquinone (CHQ) with removal of ammonium ion. In the next step, a CHQ-dehalogenase dehalogenated CHQ to hydroquinone (HQ) that cleaved into γ-hydroxymuconic semialdehyde by a HQ-dioxygenase. The 2C4AP degradation was also investigated in sterile and non-sterile soil microcosms using strain SPG. The results show that the SPG cells degraded 2C4AP more rapidly in sterile soil than non-sterile soil. Our studies showed that strain SPG may be used for bioremediation of 2C4AP-contaminated sites. This is the first report of the 2C4AP degradation by any bacteria.
Journal of Plant Interactions | 2015
Vimal Kumar Dubey; Kottakota Chandrasekhar; Alok Srivastava; Aminuddin; Vijai Pal Singh; Kartik Dhar; Pankaj Kumar Arora
The coat protein (CP)-mediated resistance against Cucumber mosaic virus (CMV) subgroup IA was developed in transgenic lines of Nicotiana tabacum cv. Petit Havana using Agrobacterium tumefaciens-mediated transformation. Ten independently transformed lines have developed, four of which were tested for resistance against CMV using virus challenge inoculations. The transgenic lines exhibiting complete resistance remained healthy and symptomless in their life span and showed reduced or no virus accumulation in their systemic leaves after virus challenge inoculation. These transgenic lines also showed resistance against CMV strains which are not closely related to CMV-Gladiolus strains. This is the first report of CP-mediated transgenic resistance against a CMV subgroup IA member isolated from India showing resistance to all CMV strains occurring in the same vicinity.
Collaboration
Dive into the Pankaj Kumar Arora's collaboration.
International Centre for Genetic Engineering and Biotechnology
View shared research outputsInternational Centre for Genetic Engineering and Biotechnology
View shared research outputs