Panpan Lu
Fudan University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Panpan Lu.
Molecular Therapy | 2016
Haiyan Ji; Zhengtao Jiang; Panpan Lu; Li Ma; Chuan Li; Hanyu Pan; Zheng Fu; Xiying Qu; Pengfei Wang; Junxiao Deng; Xinyi Yang; Jian-Hua Wang; Huanzhang Zhu
HIV-1 escapes antiretroviral agents by integrating into the host DNA and forming a latent transcriptionally silent HIV-1 provirus. Transcriptional activation is prerequisite for reactivation and the eradication of latent HIV-1 proviruses. dCas9-SunTag-VP64 transcriptional system has been reported that it can robustly activate the expression of an endogenous gene using a single guide RNA (sgRNA). Here, we systematically investigated the potential of dCas9-SunTag-VP64 with the designed sgRNAs for reactivating latent HIV-1. We found dCas9-SunTag-VP64 with sgRNA 4 or sgRNA 5 targeted from -164 to -146 or -124 to -106 bp upstream of the transcription start sites of HIV-1 could induce high expression of luciferase reporter gene after screening of sgRNAs targeting different regions of the HIV-1 promoter. Further, we confirmed that dCas9-SunTag-VP64 with sgRNA 4 or sgRNA 5 can effectively reactivate latent HIV-1 transcription in several latently infected human T-cell lines. Moreover, we confirmed that the reactivation of latent HIV-1 by dCas9-SunTag-VP64 with the designed sgRNA occurred through specific binding to the HIV-1 LTR promoter without genotoxicity and global T-cell activation. Taken together, our data demonstrated dCas9-SunTag-VP64 system can effectively and specifically reactivate latent HIV-1 transcription, suggesting that this strategy could offer a novel approach to anti-HIV-1 latency.
Scientific Reports | 2016
Panpan Lu; Xiying Qu; Yinzhong Shen; Zhengtao Jiang; Pengfei Wang; Hanxian Zeng; Haiyan Ji; Junxiao Deng; Xinyi Yang; Xian Li; Hongzhou Lu; Huanzhang Zhu
None of the currently used anti-HIV-1 agents can effectively eliminate latent HIV-1 reservoirs, which is a major hurdle to a complete cure for AIDS. We report here that a novel oral BET inhibitor OTX015, a thienotriazolodiazepine compound that has entered phase Ib clinical development for advanced hematologic malignancies, can effectively reactivate HIV-1 in different latency models with an EC50 value 1.95–4.34 times lower than JQ1, a known BET inhibitor that can reactivate HIV-1 latency. We also found that OTX015 was more potent when used in combination with prostratin. More importantly, OTX015 treatment induced HIV-1 full-length transcripts and viral outgrowth in resting CD4+ T cells from infected individuals receiving suppressive antiretroviral therapy (ART), while exerting minimal toxicity and effects on T cell activation. Finally, biochemical analysis showed that OTX015-mediated activation of HIV-1 involved an increase in CDK9 occupancy and RNAP II C-terminal domain (CTD) phosphorylation. Our results suggest that the BET inhibitor OTX015 may be a candidate for anti-HIV-1-latency therapies.
Scientific Reports | 2017
Pengfei Wang; Panpan Lu; Xiying Qu; Yinzhong Shen; Hanxian Zeng; Xiaoli Zhu; Yuqi Zhu; Xian Li; Hao Wu; Jianqing Xu; Hongzhou Lu; Zhongjun Ma; Huanzhang Zhu
Cells harboring latent HIV-1 pose a major obstacle to eradication of the virus. The ‘shock and kill’ strategy has been broadly explored to purge the latent reservoir; however, none of the current latency-reversing agents (LRAs) can safely and effectively activate the latent virus in patients. In this study, we report an ingenol derivative called EK-16A, isolated from the traditional Chinese medicinal herb Euphorbia kansui, which displays great potential in reactivating latent HIV-1. A comparison of the doses used to measure the potency indicated EK-16A to be 200-fold more potent than prostratin in reactivating HIV-1 from latently infected cell lines. EK-16A also outperformed prostratin in ex vivo studies on cells from HIV-1-infected individuals, while maintaining minimal cytotoxicity effects on cell viability and T cell activation. Furthermore, EK-16A exhibited synergy with other LRAs in reactivating latent HIV-1. Mechanistic studies indicated EK-16A to be a PKCγ activator, which promoted both HIV-1 transcription initiation by NF-κB and elongation by P-TEFb signal pathways. Further investigations aimed to add this compound to the therapeutic arsenal for HIV-1 eradication are in the pipeline.
Scientific Reports | 2017
Panpan Lu; Yinzhong Shen; He Yang; Yanan Wang; Zhengtao Jiang; Xinyi Yang; Yangcheng Zhong; Hanyu Pan; Jianqing Xu; Hongzhou Lu; Huanzhang Zhu
Persistent latent reservoir in resting CD4+ T cells is a major obstacle in curing HIV-1 infection. Effective strategies for eradication of the HIV-1 reservoir are urgently needed. We report here for the first time that two BET inhibitors, RVX-208, which has entered phase II clinical trials for diverse cardiovascular disorders, and PFI-1, which has been widely studied in oncology, can reactivate HIV-1 from latency. RVX-208 and PFI-1 treatment alone or in combination with other latency reversing agents efficiently reactivated HIV-1 transcription through an up-regulation of P-TEFb by increasing CDK9 Thr-186 phosphorylation in latently infected Jurkat T cells in vitro. The two BET inhibitors also reactivated HIV-1 transcription in cART treated patient-derived resting CD4+ T cells ex vivo, without influence on global immune cell activation. Our findings, in combination with previous reports, further confirm that BET inhibitors are a group of leading compounds for combating HIV-1 latency for viral eradication.
Molecular therapy. Nucleic acids | 2017
Junxiao Deng; Xiying Qu; Panpan Lu; Xinyi Yang; Yuqi Zhu; Haiyan Ji; Yanan Wang; Zhengtao Jiang; Xian Li; Yangcheng Zhong; He Yang; Hanyu Pan; Won-Bin Young; Huanzhang Zhu
HIV-1 inserts its proviral DNA into the infected host cells, by which HIV proviral DNA can then be duplicated along with each cell division. Thus, provirus cannot be eradicated completely by current antiretroviral therapy. We have developed an innovative strategy to silence the HIV provirus by targeted DNA methylation on the HIV promoter region. We genetically engineered a chimeric DNA methyltransferase 1 composed of designed zinc-finger proteins to become ZF2 DNMT1. After transient transfection of the molecular clone encoding this chimeric protein into HIV-1 infected or latently infected cells, efficient suppression of HIV-1 expression by the methylation of CpG islands in 5′-LTR was observed and quantified. The effective suppression of HIV in latently infected cells by ZF2-DNMT1 is stable and can last through about 40 cell passages. Cytotoxic caused by ZF2-DNMT1 was only observed during cellular proliferation. Taken together, our results demonstrate the potential of this novel approach for anti-HIV-1 therapy.
Oncotarget | 2017
Hanyu Pan; Panpan Lu; Yinzhong Shen; Yanan Wang; Zhengtao Jiang; Xinyi Yang; Yangcheng Zhong; He Yang; Inam Ulla Khan; Muya Zhou; Bokang Li; Ziyu Zhang; Jianqing Xu; Hongzhou Lu; Huanzhang Zhu
The long-lived latent HIV-1 reservoir is the major barrier for complete cure of Acquired Immune Deficiency Syndrome (AIDS). Here we report that a novel bromodomain and extraterminal domain (BET) inhibitor bromosporine which can broadly target BETs, is able to potently reactivate HIV-1 replication in different latency models alone and more powerful when combined with prostratin or TNF-α. Furthermore, the treatment with bromosporine induced HIV-1 full-length transcripts in resting CD4+ T cells from infected individuals with suppressive antiretroviral therapy (ART) ex vivo, with no obvious cytotoxicity or global activation of T cell. Finally, our data suggest that Tat plays a critical role in the bromosporine-mediated reactivation of latent HIV-1, which involved the increase of CDK9 T-loop phosphorylation. In summary, we found that the BET inhibitor bromosporine, alone or with other activators, might be a candidate for future HIV-1 eradication strategies.
AIDS Research and Human Retroviruses | 2015
Junxiao Deng; Yan Chen; Donglin Ding; Panpan Lu; Xinyi Yang; Zhishuo Song; Huanzhang Zhu
TRIM5α is an antiviral factor that can greatly limit HIV-1 infection. Although several researchers have investigated whether TRIM5α H43Y polymorphism influences the risk of HIV-1 infection, no definite conclusion has ever been drawn. In this research, we performed a meta-analysis to generate a more robust estimate of the association between TRIM5α H43Y and susceptibility to HIV-1 infection. In total, six studies including 1,713 HIV-1 patients and 1,814 controls were included. TRIM5α H43Y polymorphisms of all individuals were genotyped. Odds ratios (ORs) with 95% confidence intervals were presented as the result of analysis. ORs for the main analysis were 0.82 (95% CI: 0.63-1.08) in the allelic comparison, 0.57 (95% CI: 0.34-0.95) in the homozygote comparison, 0.82 (95% CI: 0.57-1.16) in the dominant model, and 0.56 (95% CI: 0.33-0.93) in the recessive model. In the subgroup analysis by ethnicity, significantly decreased risks of infection were detected in the Asian population (homozygote comparison: 0.50, 95% CI: 0.28-0.89; recessive model: 0.49, 95% CI: 0.28-0.87), whereas such effects were not observed in the non-Asian population. Our meta-analysis indicates that TRIM5α H43Y polymorphism is associated with a decreased risk of HIV-1 infection in the homozygote comparison and recessive model. This polymorphism may act as a protective factor against HIV-1 infection, especially in Asians.
AIDS Research and Human Retroviruses | 2015
Xiaohui Wang; Pengfei Wang; Zheng Fu; Haiyan Ji; Xiying Qu; Hanxian Zeng; Xiaoli Zhu; Junxiao Deng; Panpan Lu; Shijun Zha; Zhishuo Song; Huanzhang Zhu
Virology | 2015
Pengfei Wang; Xiying Qu; Xin Zhou; Yinzhong Shen; Haiyan Ji; Zheng Fu; Junxiao Deng; Panpan Lu; Wenbo Yu; Hongzhou Lu; Huanzhang Zhu
Current HIV Research | 2016
Xian Li; Hanxian Zeng; Pengfei Wang; Lu Lin; Lin Liu; Pinyi Zhen; Yuanzhe Fu; Panpan Lu; Huanzhang Zhu