Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pantelis Poumbourios is active.

Publication


Featured researches published by Pantelis Poumbourios.


FEBS Letters | 2003

Cell surface expression of functional hepatitis C virus E1 and E2 glycoproteins.

Heidi E. Drummer; Anne L. Maerz; Pantelis Poumbourios

Hepatitis C virus (HCV) glycoproteins E1 and E2 are believed to be retained in the endoplasmic reticulum (ER) or cis‐Golgi compartment via retention signals located in their transmembrane domains. Here we describe the detection of E1 and E2 at the surface of transiently transfected HEK 293T and Huh7 cells. Surface‐localized E1E2 heterodimers presented exclusively as non‐covalently associated complexes. Surface‐expressed E2 contained trans‐Golgi modified complex/hybrid type carbohydrate and migrated diffusely between 70 and 90 kDa while intracellular E1 and E2 existed as high mannose 35 kDa and 70 kDa precursors, respectively. In addition, surface‐localized E1E2 heterodimers were incorporated into E1E2‐pseudotyped HIV‐1 particles that were competent for entry into Huh7 cells. These studies suggest that functional HCV glycoproteins are not retained exclusively in the ER and transit through the secretory pathway.


Nature Immunology | 2002

Disulfide exchange in domain 2 of CD4 is required for entry of HIV-1

Lisa J. Matthias; Patricia T.W. Yam; Xing-Mai Jiang; Nick Vandegraaff; Peng Li; Pantelis Poumbourios; Neil Donoghue; Philip J. Hogg

CD4, a member of the immunoglobulin superfamily of receptors that mediates cell-cell interactions in the immune system, is the primary receptor for HIV-1. The extracellular portion of CD4 is a concatenation of four immunoglobulin-like domains, D1 to D4. The D1, D2 and D4 domains each contain a disulfide bond. We show here that the D2 disulfide bond is redox-active. The redox state of the thiols (disulfide versus dithiol) appeared to be regulated by thioredoxin, which is secreted by CD4+ T cells. Locking the CD4 and the thioredoxin active-site dithiols in the reduced state with a hydrophilic trivalent arsenical blocked entry of HIV-1 into susceptible cells. These findings indicate that redox changes in CD4 D2 are important for HIV-1 entry and represent a new target for HIV-1 entry inhibitors.


Journal of Virology | 2002

Identification of the hepatitis C virus E2 glycoprotein binding site on the large extracellular loop of CD81.

Heidi E. Drummer; Kirilee A. Wilson; Pantelis Poumbourios

ABSTRACT The binding of hepatitis C virus glycoprotein E2 to the large extracellular loop (LEL) of CD81 has been shown to modulate human T-cell and NK cell activity in vitro. Using random mutagenesis of a chimera of maltose-binding protein and LEL residues 113 to 201, we have determined that the E2-binding site on CD81 comprises residues Ile182, Phe186, Asn184, and Leu162. These findings reveal an E2-binding surface of approximately 806 Å2 and potential target sites for the development of small-molecule inhibitors of E2 binding.


Journal of Virology | 2006

A conserved Gly436-Trp-Leu-Ala-Gly-Leu-Phe-Tyr motif in hepatitis C virus glycoprotein E2 is a determinant of CD81 binding and viral entry

Heidi E. Drummer; Irene Boo; Anne L. Maerz; Pantelis Poumbourios

ABSTRACT The hepatitis C virus (HCV) glycoproteins E1 and E2 form a heterodimer that mediates CD81 receptor binding and viral entry. In this study, we used site-directed mutagenesis to examine the functional role of a conserved G436WLAGLFY motif of E2. The mutants could be placed into two groups based on the ability of mature virion-incorporated E1E2 to bind the large extracellular loop (LEL) of CD81 versus the ability to mediate cellular entry of pseudotyped retroviral particles. Group 1 comprised E2 mutants where LEL binding ability largely correlated with viral entry ability, with conservative and nonconservative substitutions (W437 L/A, L438A, L441V/F, and F442A) inhibiting both functions. These data suggest that Trp-437, Leu-438, Leu-441, and Phe-442 directly interact with the LEL. Group 2 comprised E2 glycoproteins with more conservative substitutions that lacked LEL binding but retained between 20% and 60% of wild-type viral entry competence. The viral entry competence displayed by group 2 mutants was explained by residual binding by the E2 receptor binding domain to cellular full-length CD81. A subset of mutants maintained LEL binding ability in the context of intracellular E1E2 forms, but this function was largely lost in virion-incorporated glycoproteins. These data suggest that the CD81 binding site undergoes a conformational transition during glycoprotein maturation through the secretory pathway. The G436P mutant was an outlier, retaining near-wild-type levels of CD81 binding but lacking significant viral entry ability. These findings indicate that the G436WLAGLFY motif of E2 functions in CD81 binding and in pre- or post-CD81-dependent stages of viral entry.


Journal of Biological Chemistry | 2007

Functional Links between the Fusion Peptide-proximal Polar Segment and Membrane-proximal Region of Human Immunodeficiency Virus gp41 in Distinct Phases of Membrane Fusion

Anna K. Bellamy-McIntyre; Chan-Sien Lay; Séverine Bär; Anne L. Maerz; Gert Hoy Talbo; Heidi E. Drummer; Pantelis Poumbourios

The binding of CD4 and chemokine receptors to the gp120 attachment glycoprotein of human immunodeficiency virus triggers refolding of the associated gp41 fusion glycoprotein into a trimer of hairpins with a 6-helix bundle (6HB) core. These events lead to membrane fusion and viral entry. Here, we examined the functions of the fusion peptide-proximal polar segment and membrane-proximal Trp-rich region (MPR), which are exterior to the 6HB. Alanine substitution of Trp666, Trp672, Phe673, and Ile675 in the MPR reduced entry by up to 120-fold without affecting gp120-gp41 association or cell-cell fusion. The L537A polar segment mutation led to the loss of gp120 from the gp120-gp41 complex, reduced entry by ∼10-fold, but did not affect cell-cell fusion. Simultaneous Ala substitution of Leu537 with Trp666, Trp672, Phe673, or Ile675 abolished entry with 50–80% reductions in cell-cell fusion. gp120-gp41 complexes of fusion-defective double mutants were resistant to soluble CD4-induced shedding of gp120, suggesting that their ability to undergo receptor-induced conformational changes was compromised. Consistent with this idea, a representative mutation, L537A/W666A, led to an ∼80% reduction in lipophilic fluorescent dye transfer between gp120-gp41-expressing cells and receptor-expressing targets, indicating a block prior to the lipid-mixing phase. The L537A/W666A double mutation increased the chymotrypsin sensitivity of the polar segment in a trimer of hairpins model, comprising the 6HB core, the polar segment, and MPR linked N-terminally to maltose-binding protein. The data indicate that the polar segment and MPR of gp41 act synergistically in forming a fusion-competent gp120-gp41 complex and in stabilizing the membrane-interactive end of the trimer of hairpins.


Journal of Virology | 2003

The Dimer Initiation Sequence Stem-Loop of Human Immunodeficiency Virus Type 1 Is Dispensable for Viral Replication in Peripheral Blood Mononuclear Cells

Melissa K. Hill; Miranda Shehu-Xhilaga; Shahan M. Campbell; Pantelis Poumbourios; Suzanne M. Crowe; Johnson Mak

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) contains two copies of genomic RNA that are noncovalently linked via a palindrome sequence within the dimer initiation site (DIS) stem-loop. In contrast to the current paradigm that the DIS stem or stem-loop is critical for HIV-1 infectivity, which arose from studies using T-cell lines, we demonstrate here that HIV-1 mutants with deletions in the DIS stem-loop are replication competent in peripheral blood mononuclear cells (PBMCs). The DIS mutants contained either the wild-type (5′GCGCGC3′) or an arbitrary (5′ACGCGT3′) palindrome sequence in place of the 39-nucleotide DIS stem-loop (NLCGCGCG and NLACGCGT). These DIS mutants were replication defective in SupT1 cells, concurring with the current model in which DIS mutants are replication defective in T-cell lines. All of the HIV-1 DIS mutants were replication competent in PBMCs over a 40-day infection period and had retained their respective DIS mutations at 40 days postinfection. Although the stability of the virion RNA dimer was not affected by our DIS mutations, the RNA dimers exhibited a diffuse migration profile when compared to the wild type. No defect in protein processing of the Gag and GagProPol precursor proteins was found in the DIS mutants. Our data provide direct evidence that the DIS stem-loop is dispensable for viral replication in PBMCs and that the requirement of the DIS stem-loop in HIV-1 replication is cell type dependent.


Journal of Virology | 2001

Functional Analysis of the Disulfide-Bonded Loop/Chain Reversal Region of Human Immunodeficiency Virus Type 1 gp41 Reveals a Critical Role in gp120-gp41 Association

Anne L. Maerz; Heidi E. Drummer; Kirilee A. Wilson; Pantelis Poumbourios

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) entry into cells is mediated by the surface-exposed envelope protein (SU) gp120, which binds to cellular CD4 and chemokine receptors, triggering the membrane fusion activity of the transmembrane (TM) protein gp41. The core of gp41 comprises an N-terminal triple-stranded coiled coil and an antiparallel C-terminal helical segment which is packed against the exterior of the coiled coil and is thought to correspond to a fusion-activated conformation. The available gp41 crystal structures lack the conserved disulfide-bonded loop region which, in human T-lymphotropic virus type 1 (HTLV-1) and murine leukemia virus TM proteins, mediates a chain reversal, connecting the antiparallel N- and C-terminal regions. Mutations in the HTLV-1 TM protein gp21 disulfide-bonded loop/chain reversal region adversely affected fusion activity without abolishing SU-TM association (A. L. Maerz, R. J. Center, B. E. Kemp, B. Kobe, and P. Poumbourios, J. Virol. 74:6614–6621, 2000). We now report that in contrast to our findings with HTLV-1, conservative substitutions in the HIV-1 gp41 disulfide-bonded loop/chain reversal region abolished association with gp120. While the mutations affecting gp120-gp41 association also affected cell-cell fusion activity, HIV-1 glycoprotein maturation appeared normal. The mutant glycoproteins were processed, expressed at the cell surface, and efficiently immunoprecipitated by conformation-dependent monoclonal antibodies. The gp120 association site includes aromatic and hydrophobic residues on either side of the gp41 disulfide-bonded loop and a basic residue within the loop. The HIV-1 gp41 disulfide-bonded loop/chain reversal region is a critical gp120 contact site; therefore, it is also likely to play a central role in fusion activation by linking CD4 plus chemokine receptor-induced conformational changes in gp120 to gp41 fusogenicity. These gp120 contact residues are present in diverse primate lentiviruses, suggesting conservation of function.


Virology | 2010

An altered and more efficient mechanism of CCR5 engagement contributes to macrophage tropism of CCR5-using HIV-1 envelopes

Jasminka Sterjovski; Michael Roche; Melissa Churchill; Anne Ellett; William Farrugia; Lachlan Robert Gray; Daniel Cowley; Pantelis Poumbourios; Benhur Lee; Steven L. Wesselingh; Anthony L. Cunningham; Paul A. Ramsland; Paul R. Gorry

While CCR5 is the principal coreceptor used by macrophage (M)-tropic HIV-1, not all primary CCR5-using (R5) viruses enter macrophages efficiently. Here, we used functionally-diverse R5 envelope (Env) clones to characterize virus-cell interactions important for efficient CCR5-mediated macrophage entry. The magnitude of macrophage entry by Env-pseudotyped reporter viruses correlated with increased immunoreactivity of CD4-induced gp120 epitopes, increased ability to scavenge low levels of cell-surface CCR5, reduced sensitivity to the CCR5 inhibitor maraviroc, and increased dependence on specific residues in the CCR5 ECL2 region. These results are consistent with an altered and more efficient mechanism of CCR5 engagement. Structural studies revealed potential alterations within the gp120 V3 loop, the gp41 interaction sites at the gp120 C- and N-termini, and within the gp120 CD4 binding site which may directly or indirectly lead to more efficient CCR5-usage. Thus, enhanced gp120-CCR5 interactions may contribute to M-tropism of R5 HIV-1 strains through different structural mechanisms.


Journal of Virology | 2007

Expression and Characterization of a Minimal Hepatitis C Virus Glycoprotein E2 Core Domain That Retains CD81 Binding

Kathleen McCaffrey; Irene Boo; Pantelis Poumbourios; Heidi E. Drummer

ABSTRACT The hepatitis C virus glycoprotein E2 receptor-binding domain is encompassed by amino acids 384 to 661 (E2661) and contains two hypervariable sequences, HVR1 and HVR2. E2 sequence comparisons revealed a third variable region, located between residues 570 and 580, that varies widely between genotypes, designated here as igVR, the intergenotypic variable region. A secreted E2661 glycoprotein with simultaneous deletions of the three variable sequences retained its ability to bind CD81 and conformation-dependent monoclonal antibodies (MAbs) and displayed enhanced binding to a neutralizing MAb directed to E2 immunogenic domain B. Our data provide insights into the E2 structure by suggesting that the three variable regions reside outside a conserved E2 core.


Journal of Virology | 2009

Tissue-Specific Sequence Alterations in the Human Immunodeficiency Virus Type 1 Envelope Favoring CCR5 Usage Contribute to Persistence of Dual-Tropic Virus in the Brain

Lachlan Robert Gray; Michael Roche; Melissa Churchill; Jasminka Sterjovski; Anne Ellett; Pantelis Poumbourios; Shameem Sheffief; Bin Wang; Nitin K. Saksena; Damian F. J. Purcell; Steven L. Wesselingh; Anthony L. Cunningham; Bruce J. Brew; Dana Gabuzda; Paul R. Gorry

ABSTRACT Most human immunodeficiency virus type 1 (HIV-1) strains isolated from the brain use CCR5 for entry into macrophages and microglia. Strains that use both CCR5 and CXCR4 for entry (R5X4 strains) have been identified in the brains of some individuals, but mechanisms underlying the persistence of R5X4 viruses compartmentalized between the brain and other tissue reservoirs are unknown. Here, we characterized changes in the HIV-1 envelope (Env) that enhance the tropism of R5X4 variants for brain or lymphoid tissue. R5X4 Envs derived from the brains of two individuals had enhanced CCR5 usage in fusion assays compared to R5X4 Envs derived from matched spleen or blood, which was associated with reduced dependence on specific residues in the CCR5 N terminus and extracellular loop 1 (ECL1) and ECL3 regions. In contrast, spleen/blood-derived Envs had enhanced CXCR4 usage compared to brain-derived Envs, which was associated with reduced dependence on residues in the CXCR4 N terminus and ECL2 region. Consequently, brain-derived Envs had preferential CCR5 usage for HIV-1 entry into the JC53 cell line, could use either CCR5 or CXCR4 for entry into monocyte-derived macrophages (MDM), and could use CCR5 (albeit inefficiently) for entry into peripheral blood mononuclear cells (PBMC), whereas the entry of spleen-derived Envs was CXCR4 dependent in all three cell types. Mutagenesis studies of Env amino acid variants influencing coreceptor usage showed that S306 in the gp120 V3 region of brain-derived Envs reduces dependence on the CCR5 N terminus and enhances CCR5 usage for HIV-1 entry into PBMC and MDM, whereas R306 in spleen-derived Envs reduces dependence on the CXCR4 N terminus and confers the CXCR4 restricted phenotype. These results identify mechanisms underlying R5X4 HIV-1 persistence in different tissue reservoirs. Tissue-specific changes in the gp120 V3 region that increase the efficiency of CCR5 or CXCR4 usage, and thereby influence coreceptor preference, may enhance the tropism of R5X4 strains for CCR5-expressing macrophage lineage cells in the brain and CXCR4-expressing T cells in lymphoid tissues, respectively.

Collaboration


Dive into the Pantelis Poumbourios's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruce E. Kemp

St. Vincent's Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Anne L. Maerz

St. Vincent's Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kirilee A. Wilson

St. Vincent's Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bostjan Kobe

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge