Panu E. Kovanen
Helsinki University Central Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Panu E. Kovanen.
Journal of Experimental Medicine | 2005
Rong Zeng; Rosanne Spolski; Steven E. Finkelstein; SangKon Oh; Panu E. Kovanen; Christian S. Hinrichs; Cynthia A. Pise-Masison; Michael F. Radonovich; John N. Brady; Nicholas P. Restifo; Jay A. Berzofsky; Warren J. Leonard
Interleukin (IL)-21 is the most recently recognized of the cytokines that share the common cytokine receptor γ chain (γc), which is mutated in humans with X-linked severe combined immunodeficiency. We now report that IL-21 synergistically acts with IL-15 to potently promote the proliferation of both memory (CD44high) and naive (CD44low) phenotype CD8+ T cells and augment interferon-γ production in vitro. IL-21 also cooperated, albeit more weakly, with IL-7, but not with IL-2. Correspondingly, the expansion and cytotoxicity of CD8+ T cells were impaired in IL-21R−/− mice. Moreover, in vivo administration of IL-21 in combination with IL-15 boosted antigen-specific CD8+ T cell numbers and resulted in a cooperative effect on tumor regression, with apparent cures of large, established B16 melanomas. Thus, our studies reveal that IL-21 potently regulates CD8+ T cell expansion and effector function, primarily in a synergistic context with IL-15.
Leukemia | 2009
Satu Mustjoki; Marja Ekblom; T. P. Arstila; Ingunn Dybedal; P.K. Epling-Burnette; François Guilhot; Henrik Hjorth-Hansen; Martin Höglund; Panu E. Kovanen; Tuisku Laurinolli; Jane L. Liesveld; Ronald Paquette; Javier Pinilla-Ibarz; Auvo Rauhala; Neil P. Shah; Bengt Simonsson; Marjatta Sinisalo; Juan-Luis Steegmann; Leif Stenke; K Porkka
Dasatinib, a broad-spectrum tyrosine kinase inhibitor (TKI), predominantly targets BCR-ABL and SRC oncoproteins and also inhibits off-target kinases, which may result in unexpected drug responses. We identified 22 patients with marked lymphoproliferation in blood while on dasatinib therapy. Clonality and immunophenotype were analyzed and related clinical information was collected. An abrupt lymphocytosis (peak count range 4–20 × 109/l) with large granular lymphocyte (LGL) morphology was observed after a median of 3 months from the start of therapy and it persisted throughout the therapy. Fifteen patients had a cytotoxic T-cell and seven patients had an NK-cell phenotype. All T-cell expansions were clonal. Adverse effects, such as colitis and pleuritis, were common (18 of 22 patients) and were preceded by LGL lymphocytosis. Accumulation of identical cytotoxic T cells was also detected in pleural effusion and colon biopsy samples. Responses to dasatinib were good and included complete, unexpectedly long-lasting remissions in patients with advanced leukemia. In a phase II clinical study on 46 Philadelphia chromosome-positive acute lymphoblastic leukemia, patients with lymphocytosis had superior survival compared with patients without lymphocytosis. By inhibiting immunoregulatory kinases, dasatinib may induce a reversible state of aberrant immune reactivity associated with good clinical responses and a distinct adverse effect profile.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Hai-Hui Xue; Panu E. Kovanen; Cynthia A. Pise-Masison; Maria Berg; Michael F. Radovich; John N. Brady; Warren J. Leonard
Interleukin (IL)-2 is a type I four-α-helical bundle cytokine that plays vital roles in antigen-mediated proliferation of peripheral blood T cells and also is critical for activation-induced cell death. We now demonstrate that IL-2 potently decreases expression of IL-7 receptor α chain (IL-7Rα) mRNA and protein. The fact that IL-7Rα is a component of the receptors for both IL-7 and thymic stromal lymphopoietin (TSLP) suggests that IL-2 can negatively regulate signals by each of these cytokines. Previously it was known that the IL-2 and IL-7 receptors shared the common cytokine receptor γ chain, γc, which suggested a possible competition between these cytokines for a receptor component. Our findings now suggest a previously unknown type of cross-talk between IL-2 and IL-7 signaling by showing that IL-2 signaling can diminish IL-7Rα expression via a phosphatidylinositol 3-kinase/Akt-dependent mechanism.
Blood | 2015
Haapaniemi Em; Meri Kaustio; Hanna Rajala; van Adrichem Aj; Leena Kainulainen; Glumoff; Rainer Döffinger; Heikki Kuusanmäki; Tarja Heiskanen-Kosma; Luca Trotta; Samuel C. Chiang; Petri Kulmala; Samuli Eldfors; Riku Katainen; Sanna Siitonen; Marja-Liisa Karjalainen-Lindsberg; Panu E. Kovanen; Otonkoski T; Kimmo Porkka; Heiskanen K; Arno Hänninen; Yenan T. Bryceson; Uusitalo-Seppälä R; Jani Saarela; Mikko Seppänen; Satu Mustjoki; Juha Kere
The signal transducer and activator of transcription (STAT) family of transcription factors orchestrate hematopoietic cell differentiation. Recently, mutations in STAT1, STAT5B, and STAT3 have been linked to development of immunodysregulation polyendocrinopathy enteropathy X-linked-like syndrome. Here, we immunologically characterized 3 patients with de novo activating mutations in the DNA binding or dimerization domains of STAT3 (p.K392R, p.M394T, and p.K658N, respectively). The patients displayed multiorgan autoimmunity, lymphoproliferation, and delayed-onset mycobacterial disease. Immunologically, we noted hypogammaglobulinemia with terminal B-cell maturation arrest, dendritic cell deficiency, peripheral eosinopenia, increased double-negative (CD4(-)CD8(-)) T cells, and decreased natural killer, T helper 17, and regulatory T-cell numbers. Notably, the patient harboring the K392R mutation developed T-cell large granular lymphocytic leukemia at age 14 years. Our results broaden the spectrum of phenotypes caused by activating STAT3 mutations, highlight the role of STAT3 in the development and differentiation of multiple immune cell lineages, and strengthen the link between the STAT family of transcription factors and autoimmunity.
Journal of Immunology | 2008
Johanna Rintahaka; Daniel Wiik; Panu E. Kovanen; Harri Alenius; Sampsa Matikainen
During an innate immune response, macrophages recognize viruses by their pattern recognition receptors. In this study, we have studied the role of membrane-associated TLRs and cytoplasmic retinoic acid inducible gene-I (RIG-I)-like receptors (RLR) in regulation of IFN-β, IL-29, IL-1β, and IL-18 production and caspases 1 and 3 activation in human macrophages. We provide evidence that TLRs are mainly involved in transcriptional up-regulation of IL-1β gene expression, whereas cytosolic dsRNA recognition pathway stimulates powerful IFN-β and IL-29 gene transcription. However, robust IL-1β secretion occurred only if two TLRs were triggered simultaneously or if a single TLR was activated in conjunction with the RLR pathway. Markedly, TLR activation did not stimulate IL-18 processing or secretion. In contrast, triggering of cytosolic RNA recognition pathway with poly(I:C) transfection or influenza A virus infection resulted in caspase-1- and -3-mediated proteolytic processing of pro-IL-18 and secretion of biologically active IL-18. Furthermore, caspase 3-dependent processing of pro-IL-18 was also observed in human HaCaT keratinocytes, and forced expression of RIG-I and its downstream effector, mitochondrial antiviral signaling protein, activated proteolytic processing of pro-IL-18, caspase-3, and apoptosis in these cells. The present results indicate that in addition to robust IFN-β, IL-29, IL-1β, and IL-18 generation, RIG-I/mitochondrial antiviral signaling protein pathway activates caspase-3, suggesting a role for these RIG-I-like receptors beyond the innate cytokine response, hence, in the induction of apoptosis of the virus-infected cell.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Johanna I. Partanen; Topi A. Tervonen; Mikko Myllynen; Essi Lind; Misa Imai; Pekka Katajisto; Gerrit J.P. Dijkgraaf; Panu E. Kovanen; Tomi P. Mäkelä; Zena Werb; Juha Klefström
Although loss of epithelial integrity is a hallmark of advanced cancer, it remains poorly understood whether genetic alterations corrupting this integrity causally facilitate tumorigenesis. We show that conditional deletion of tumor suppressor gene Lkb1 (Par-4) in the mammary gland compromises epithelial integrity manifested by mislocalization of cell polarity markers, lateralization of tight junctions, deterioration of desmosomes and basement membrane (BM), and hyperbranching of the mammary ductal tree. We identify the desmosomal BM remodelling serine protease Hepsin as a key factor mediating Lkb1 loss-induced structural alterations in mammary epithelium and BM fragmentation. Although loss of Lkb1 alone does not promote mammary tumorigenesis, combination of Lkb1 deficiency with oncogenic c-Myc leads to dramatic acceleration in tumor formation. The results coupling Lkb1 loss-mediated epithelial integrity defects to mislocalization of serine protease Hepsin and to oncogenic synergy with c-Myc imply that Lkb1 loss facilitates oncogenic proliferation by releasing epithelial cells from structural BM boundaries.
Apmis | 1997
Olli Silvennoinen; Pipsa Saharinen; Kirsi Paukku; Kati Takaluoma; Panu E. Kovanen
Cytokines are the principal regulators of cell proliferation and differentiation of hematopoietic cells and these responses are initiated through activation of hematopoietic cytokine receptors. Although the receptor intracellular domains lack any kinase domains, activation of cytokine receptors lead to rapid induction of tyrosine phosphorylation. Recently, cytokine receptors have been shown to associate with and activate members of the cytoplasmic Jak tyrosine kinase family. Activation of Jak kinases leads to phosphorylation of several signaling proteins and thereby couples ligand‐mediated receptor stimulation to activation of intracellular signaling pathways. The best characterized substrates for Jaks are the Stat transcription factors, which are crucial mediators of cytokine‐mediated gene responses, and, particularly, central determinants for the specificity in cytokine responses.
Journal of Biological Chemistry | 2008
Panu E. Kovanen; Jérôme Bernard; Amin Al-Shami; Chengyu Liu; Julie Bollenbacher-Reilley; Lynn Young; Cynthia A. Pise-Masison; Rosanne Spolski; Warren J. Leonard
Interleukin-2 (IL-2) is a pleiotropic cytokine that regulates lymphocyte proliferation and peripheral tolerance. IL-2 activates mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase, and signal transducer and activator of transcription (STAT) pathways and modulates expression of target genes. Systematic analysis of IL-2 target genes has revealed regulation of potential feedback inhibitors of IL-2 signaling, including several suppressor of cytokine signaling (SOCS) family members as well as MAPK pathway-regulating dual specificity phosphatases (DUSPs). Here we have evaluated the in vivo actions of DUSP5, an extracellular signal-regulated kinase 1/2 (ERK1/2)-specific phosphatase, by generating transgenic mice overexpressing DUSP5 within the lymphoid compartment. We show that transgenic DUSP5 expression results in a block in thymocyte development at the double positive stage. We also demonstrate that DUSP5-expressing mature T cells exhibit decreased IL-2-dependent proliferation and defective IL-2-mediated induction of genes. Finally, DUSP5 transgenic mice develop autoimmune symptoms, suggesting a role for the MAPK pathway in the regulation of tolerance. Thus, proper regulation of DUSP5 activity is critical for normal immune system development, IL-2 actions, and tolerance.
Acta Neuropathologica | 1997
A. Mäenpää; Panu E. Kovanen; Anders Paetau; Juha Jääskeläinen; Tuomo Timonen
Abstract To identify antigenic differences between gliomas and normal brain, we have immunohistochemically studied the expression of lymphocyte adhesion molecules (ICAM-1, ICAM-2, ICAM-3, VCAM-1, E-selectin and CD58), epidermal growth factor receptor (EGFR) and extracellular matrix proteins (collagen IV, fibronectin, laminin, merosin, tenascin and vitronectin) in these tissues. Gliomas expressed high levels of ICAM-1, CD58 (LFA-3), EGFR, tenascin and vitronectin, whereas only very low levels were detected in normal brain. VCAM-1 expression was detected in 15 out of 25 gliomas but not in normal brain. The presence of VCAM-1 in gliomas was verified by immunoblotting and RNase protection assay, and in glioma cell lines by Northern blotting. Expression of VCAM-1 in gliomas may partially explain lymphocytic infiltration, and anti-VCAM-1 antibodies may be of potential in antibody mixtures for targeted therapy of gliomas.
PLOS ONE | 2010
Claudia Filippone; Rauli Franssila; Arun Kumar; Leena Saikko; Panu E. Kovanen; Maria Söderlund-Venermo; Klaus Hedman
Background Continued development of in-vitro procedures for expansion and differentiation of erythroid progenitor cells (EPC) is essential not only in hematology and stem cell research but also virology, in light of the strict erythrotropism of the clinically important human parvovirus B19. Methodology/Principal Findings We cultured EPC directly from ordinary blood samples, without ex vivo stem cell mobilization or CD34+ cell in vitro preselection. Profound increase in the absolute cell number and clustering activity were observed during culture. The cells obtained expressed the EPC marker combination CD36, CD71 and glycophorin, but none of the lymphocyte, monocyte or NK markers. The functionality of the generated EPC was examined by an in vitro infection assay with human parvovirus B19, tropic for BFU-E and CFU-E cells. Following infection (i) viral DNA replication and mRNA production were confirmed by quantitative PCR, and (ii) structural and nonstructural proteins were expressed in >50% of the cells. As the overall cell number increased 100–200 fold, and the proportion of competent EPC (CD34+ to CD36+) rose from <0.5% to >50%, the in vitro culture procedure generated the EPC at an efficiency of >10 000-fold. Comparative culturing of unselected PBMC and ex vivo-preselected CD34+ cells produced qualitatively and quantitatively similar yields of EPC. Conclusions/Significance This approach yielding EPC directly from unmanipulated peripheral blood is gratifyingly robust and will facilitate the study of myeloid infectious agents such as the B19 virus, as well as the examination of erythropoiesis and its cellular and molecular mechanisms.