Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paola Blanchette is active.

Publication


Featured researches published by Paola Blanchette.


Molecular and Cellular Biology | 2004

Both BC-Box Motifs of Adenovirus Protein E4orf6 Are Required To Efficiently Assemble an E3 Ligase Complex That Degrades p53

Paola Blanchette; Chi Ying Cheng; Qin Yan; Gary Ketner; David A. Ornelles; Thomas Dobner; Ronald C. Conaway; Joan Weliky Conaway; Philip E. Branton

ABSTRACT Small DNA tumor viruses typically encode proteins that either inactivate or degrade p53. Human adenoviruses encode products, including E4orf6 and E1B55K, that do both. Each independently binds to p53 and inhibits its ability to activate gene expression; however, in combination they induce p53 degradation by the ubiquitin pathway. We have shown previously that p53 degradation relies on interactions of E4orf6 with the cellular proteins Cul5, Rbx1, and elongins B and C to form an E3 ligase similar to the SCF and VBC complexes. Here we show that, like other elongin BC-interacting proteins, including elongin A, von Hippel-Lindau protein, and Muf1, the interaction of E4orf6 is mediated by the BC-box motif; however, E4orf6 uniquely utilizes two BC-box motifs for degradation of p53 and another target, Mre11. In addition, our data suggest that the interaction of E1B55K with E4orf6 depends on the ability of E4orf6 to form the E3 ligase complex and that such complex formation may be required for all E4orf6-E1B55K functions.


Journal of Virology | 2010

Proteasome-dependent degradation of Daxx by the viral E1B-55K protein in human adenovirus-infected cells.

Sabrina Schreiner; Peter Wimmer; Hüseyin Sirma; Roger D. Everett; Paola Blanchette; Peter Groitl; Thomas Dobner

ABSTRACT The death-associated protein Daxx found in PML (promyelocytic leukemia protein) nuclear bodies (PML-NBs) is involved in transcriptional regulation and cellular intrinsic antiviral resistence against incoming viruses. We found that knockdown of Daxx in a nontransformed human hepatocyte cell line using RNA interference (RNAi) techniques results in significantly increased adenoviral (Ad) replication, including enhanced viral mRNA synthesis and viral protein expression. This Daxx restriction imposed upon adenovirus growth is counteracted by early protein E1B-55K (early region 1B 55-kDa protein), a multifunctional regulator of cell-cycle-independent Ad5 replication. The viral protein binds to Daxx and induces its degradation through a proteasome-dependent pathway. We show that this process is independent of Ad E4orf6 (early region 4 open reading frame 6), known to promote the proteasomal degradation of cellular p53, Mre11, DNA ligase IV, and integrin α3 in combination with E1B-55K. These results illustrate the importance of the PML-NB-associated factor Daxx in virus growth restriction and suggest that E1B-55K antagonizes innate antiviral activities of Daxx and PML-NBs to stimulate viral replication at a posttranslational level.


Journal of Virology | 2009

Identification of Integrin α3 as a New Substrate of the Adenovirus E4orf6/E1B 55-Kilodalton E3 Ubiquitin Ligase Complex

Frédéric Dallaire; Paola Blanchette; Peter Groitl; Thomas Dobner; Philip E. Branton

ABSTRACT The human adenovirus E4orf6 and E1B55K proteins promote viral replication by targeting several cellular proteins for degradation. The E4orf6 product has been shown by our group and others to form an E3 ubiquitin ligase complex that contains elongins B and C and cullin family member Cul5. E1B55K associates with this complex, where it is believed to function primarily to introduce bound substrates for degradation via proteasomes. In addition to p53, its first known substrate, the E4orf6/E1B 55-kDa complex (E4orf6/E1B55K) was shown to promote the degradation of Mre11 and DNA ligase IV; however, additional substrates are believed to exist. This notion is strengthened by the fact that none of these substrates seems likely to be associated with additional functions shown to be mediated by the E4orf6-associated E3 ubiquitin ligase complex, including export of late viral mRNAs and blockage of export of the bulk cellular mRNAs from the nucleus. In an attempt to identify new E4orf6/E1B55K substrates, we undertook a proteomic screen using human p53-null, non-small-cell lung carcinoma H1299 cells expressing either E4orf6 protein alone or in combination with E1B55K through infection by appropriate adenovirus vectors. One cellular protein that appeared to be degraded by E1B55K in combination with the E4orf6 protein was a species of molecular mass ∼130 kDa that was identified as the integrin α3 subunit (i.e., very late activation antigen 3 alpha subunit). Preliminary analyses suggested that degradation of α3 may play a role in promoting release and spread of progeny virions.


Virology | 2009

Manipulation of the ubiquitin–proteasome pathway by small DNA tumor viruses

Paola Blanchette; Philip E. Branton

Viruses have evolved to use cellular pathways to their advantage, including the ubiquitin-proteasome pathway of protein degradation. In several cases, viruses produce proteins that highjack cellular E3 ligases to modify their substrate specificity in order to eliminate unwanted cellular proteins, in particular inhibitors of the cell cycle. They can also inhibit E3 ligase to prevent specific protein degradation or even use the system to control the level of expression of their own proteins. In this review we explore the specific ways that small DNA tumor viruses exploit the ubiquitin-proteasome pathway for their own benefit.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Intranuclear targeting and nuclear export of the adenovirus E1B-55K protein are regulated by SUMO1 conjugation

Kathrin Kindsmüller; Peter Groitl; Barbara Härtl; Paola Blanchette; Joachim Hauber; Thomas Dobner

We have investigated the requirements for CRM1-mediated nuclear export and SUMO1 conjugation of the adenovirus E1B-55K protein during productive infection. Our data show that CRM1 is the major export receptor for E1B-55K in infected cells. Functional inactivation of the E1B-55K CRM1-dependent nuclear export signal (NES) or leptomycin B treatment causes an almost complete redistribution of the viral protein from the cytoplasm to the nucleus and its accumulation at the periphery of the viral replication centers. Interestingly, however, this nuclear restriction imposed on the wild type and the NES mutant protein is fully compensated by concurrent inactivation of the adjacent SUMO1 conjugation site. Moreover, the same mutation fully reverses defects of the NES mutant in the nucleocytoplasmic transport of Mre11 and proteasomal degradation of p53. These results show that nuclear export of E1B-55K in infected cells occurs via CRM1-dependent and -independent pathways and suggest that SUMO1 conjugation and deconjugation provide a molecular switch that commits E1B-55K to a CRM1-independent export pathway.


Journal of Virology | 2008

Control of mRNA Export by Adenovirus E4orf6 and E1B55K Proteins during Productive Infection Requires E4orf6 Ubiquitin Ligase Activity

Paola Blanchette; Kathrin Kindsmüller; Peter Groitl; Frédéric Dallaire; Thomas Speiseder; Philip E. Branton; Thomas Dobner

ABSTRACT During the adenovirus infectious cycle, the early proteins E4orf6 and E1B55K are known to perform several functions. These include nuclear export of late viral mRNAs, a block of nuclear export of the bulk of cellular mRNAs, and the ubiquitin-mediated degradation of selected proteins, including p53 and Mre11. Degradation of these proteins occurs via a cellular E3 ubiquitin ligase complex that is assembled through interactions between elongins B and C and BC boxes present in E4orf6 to form a cullin 5-based ligase complex. E1B55K, which has been known for some time to associate with the E4orf6 protein, is thought to bind to specific substrate proteins to bring them to the complex for ubiquitination. Earlier studies with E4orf6 mutants indicated that the interaction between the E4orf6 and E1B55K proteins is optimal only when E4orf6 is able to form the ligase complex. These and other observations suggested that most if not all of the functions ascribed to E4orf6 and E1B55K during infection, including the control of mRNA export, are achieved through the degradation of specific substrates by the E4orf6 ubiquitin ligase activity. We have tested this hypothesis through the generation of a virus mutant in which the E4orf6 product is unable to form a ligase complex and indeed have found that this mutant behaves identically to an E4orf6− virus in production of late viral proteins, growth, and export of the late viral L5 mRNA.


Journal of Virology | 2011

Adenovirus Type 5 Early Region 1B 55K Oncoprotein-Dependent Degradation of Cellular Factor Daxx Is Required for Efficient Transformation of Primary Rodent Cells

Sabrina Schreiner; Peter Wimmer; Peter Groitl; Shuen-Yuan Chen; Paola Blanchette; Philip E. Branton; Thomas Dobner

ABSTRACT Early region 1B 55K (E1B-55K) from adenovirus type 5 (Ad5) is a multifunctional regulator of lytic infection and contributes in vitro to complete cell transformation of primary rodent cells in combination with Ad5 E1A. Inhibition of p53 activated transcription plays a key role in processes by which E1B-55K executes its oncogenic potential. Nevertheless, additional functions of E1B-55K or further protein interactions with cellular factors of DNA repair, transcription, and apoptosis, including Mre11, PML, and Daxx, may also contribute to the transformation process. In line with previous results, we performed mutational analysis to define a Daxx interaction motif within the E1B-55K polypeptide. The results from these studies showed that E1B-55K/Daxx binding is not required for inhibition of p53-mediated transactivation or binding and degradation of cellular factors (p53/Mre11). Surprisingly, these mutants lost the ability to degrade Daxx and showed reduced transforming potential in primary rodent cells. In addition, we observed that E1B-55K lacking the SUMO-1 conjugation site (SCS/K104R) was sufficient for Daxx interaction but no longer capable of E1B-55K-dependent proteasomal degradation of the cellular factor Daxx. These results, together with the observation that E1B-55K SUMOylation is required for efficient transformation, provides evidence for the idea that SUMO-1-conjugated E1B-55K-mediated degradation of Daxx plays a key role in adenoviral oncogenic transformation. We assume that the viral protein contributes to cell transformation through the modulation of Daxx-dependent pathways. This further substantiates the assumption that further mechanisms for efficient transformation of primary cells can be separated from functions required for the inhibition of p53-stimulated transcription.


Oncogene | 2008

Adenovirus type 5 early region 1B 55-kDa oncoprotein can promote cell transformation by a mechanism independent from blocking p53-activated transcription.

Barbara Härtl; T Zeller; Paola Blanchette; Elisabeth Kremmer; Thomas Dobner

Inhibition of p53-activated transcription is an integral part of the mechanism by which early region 1B 55K oncoprotein (E1B-55K) from adenovirus type 5 (Ad5) contributes to complete cell transformation in combination with Ad E1A. In addition, more recent data suggest that the mode of action of the Ad protein during transformation may involve additional functions and other protein interactions. In the present study, we performed a comprehensive mutational analysis to assign further transforming functions of Ad5 E1B-55K to distinct domains within the viral polypeptide. Results from these studies show that the functions required for transformation are encoded within several patches of the 55K primary sequence, including several clustered cysteine and histidine residues, some of which match the consensus for zinc fingers. In addition, two amino-acid substitutions (C454S/C456S) created a 55K mutant protein, which had substantially reduced transforming activity. Interestingly, the same mutations neither affected binding to p53 nor inhibition of p53-mediated transactivation. Therefore, an activity necessary for efficient transformation of primary rat cells can be separated from functions required for inhibition of p53-stimulated transcription. Our data indicate that this activity is linked to the ability of the Ad5 protein to bind to components of the Mre11/Rad50/NBS1 DNA double-strand break repair complex, and/or its ability to assemble multiprotein aggregates in the cytoplasm and nucleus of transformed rat cells. These results introduce a new function for Ad5 E1B-55K and suggest that the viral protein contributes to cell transformation through p53 transcription-dependent and -independent pathways.


BMC Bioinformatics | 2012

CaPSID: A bioinformatics platform for computational pathogen sequence identification in human genomes and transcriptomes

Ivan Borozan; Shane Wilson; Paola Blanchette; Philippe Laflamme; Stuart Watt; Paul M. Krzyzanowski; Fabrice Sircoulomb; Robert Rottapel; Philip E. Branton; Vincent Ferretti

BackgroundIt is now well established that nearly 20% of human cancers are caused by infectious agents, and the list of human oncogenic pathogens will grow in the future for a variety of cancer types. Whole tumor transcriptome and genome sequencing by next-generation sequencing technologies presents an unparalleled opportunity for pathogen detection and discovery in human tissues but requires development of new genome-wide bioinformatics tools.ResultsHere we present CaPSID (Computational Pathogen Sequence IDentification), a comprehensive bioinformatics platform for identifying, querying and visualizing both exogenous and endogenous pathogen nucleotide sequences in tumor genomes and transcriptomes. CaPSID includes a scalable, high performance database for data storage and a web application that integrates the genome browser JBrowse. CaPSID also provides useful metrics for sequence analysis of pre-aligned BAM files, such as gene and genome coverage, and is optimized to run efficiently on multiprocessor computers with low memory usage.ConclusionsTo demonstrate the usefulness and efficiency of CaPSID, we carried out a comprehensive analysis of both a simulated dataset and transcriptome samples from ovarian cancer. CaPSID correctly identified all of the human and pathogen sequences in the simulated dataset, while in the ovarian dataset CaPSID’s predictions were successfully validated in vitro.


Journal of Virology | 2013

Role of E1B55K in E4orf6/E1B55K E3 Ligase Complexes Formed by Different Human Adenovirus Serotypes

Chi Ying Cheng; Timra Gilson; Peter Wimmer; Sabrina Schreiner; Gary Ketner; Thomas Dobner; Philip E. Branton; Paola Blanchette

ABSTRACT The E4orf6 protein of serotypes representing all human adenovirus species forms Cullin-based E3 ubiquitin ligase complexes that facilitate virus infection by inducing degradation of cellular proteins that impede efficient viral replication. This complex also includes the viral E1B55K product believed to bind and introduce substrates for ubiquitination. Heterogeneity in the composition of these ligases exists, as some serotypes form Cul5-based complexes whereas others utilize Cul2. Significant variations in substrate specificities also exist among serotypes, as some degrade certain substrates very efficiently whereas others induce more modest or little degradation. As E1B55K is believed to function as the substrate acquisition component of the ligase, we undertook studies to compare the ability of representative E1B55K proteins to bind substrates with the efficacy of degradation by their respective E4orf6-based ligases. Interestingly, although efficient degradation in some cases corresponded to the ability of E1B55K to bind to or relocalize substrates, there were several examples of substrates that bound efficiently to E1B55K but were not degraded and others in which substrates were degraded even though binding to E1B55K was low or undetectable. These results suggest that transient interactions with E1B55K may be sufficient for efficient substrate degradation and that binding alone is not sufficient, implying that the orientation of the substrate in the ligase complex is probably crucial. Nevertheless, we found that the substrate specificity of certain E4orf6-based ligases could be altered through the formation of hybrid complexes containing E1B55K from another serotype, thus confirming identification of E1B55K as the substrate acquisition component of the complex.

Collaboration


Dive into the Paola Blanchette's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Dobner

University of Regensburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Groitl

Heinrich Pette Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Wimmer

Heinrich Pette Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge