Paola Campagnolo
University of Bristol
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paola Campagnolo.
Circulation Research | 2011
Rajesh Katare; Federica Riu; Kathryn Mitchell; Miriam Gubernator; Paola Campagnolo; Yuxin Cui; Orazio Fortunato; Elisa Avolio; Daniela Cesselli; Antonio Paolo Beltrami; Gianni D. Angelini; Costanza Emanueli; Paolo Madeddu
Rationale: Pericytes are key regulators of vascular maturation, but their value for cardiac repair remains unknown. Objective: We investigated the therapeutic activity and mechanistic targets of saphenous vein-derived pericyte progenitor cells (SVPs) in a mouse myocardial infarction (MI) model. Methods and Results: SVPs have a low immunogenic profile and are resistant to hypoxia/starvation (H/S). Transplantation of SVPs into the peri-infarct zone of immunodeficient CD1/Foxn-1nu/nu or immunocompetent CD1 mice attenuated left ventricular dilatation and improved ejection fraction compared to vehicle. Moreover, SVPs reduced myocardial scar, cardiomyocyte apoptosis and interstitial fibrosis, improved myocardial blood flow and neovascularization, and attenuated vascular permeability. SVPs secrete vascular endothelial growth factor A, angiopoietin-1, and chemokines and induce an endogenous angiocrine response by the host, through recruitment of vascular endothelial growth factor B expressing monocytes. The association of donor- and recipient-derived stimuli activates the proangiogenic and prosurvival Akt/eNOS/Bcl-2 signaling pathway. Moreover, microRNA-132 (miR-132) was constitutively expressed and secreted by SVPs and remarkably upregulated, together with its transcriptional activator cyclic AMP response element-binding protein, on stimulation by H/S or vascular endothelial growth factor B. We next investigated if SVP-secreted miR-132 acts as a paracrine activator of cardiac healing. In vitro studies showed that SVP conditioned medium stimulates endothelial tube formation and reduces myofibroblast differentiation, through inhibition of Ras-GTPase activating protein and methyl-CpG-binding protein 2, which are validated miR-132 targets. Furthermore, miR-132 inhibition by antimiR-132 decreased SVP capacity to improve contractility, reparative angiogenesis, and interstitial fibrosis in infarcted hearts. Conclusion: SVP transplantation produces long-term improvement of cardiac function through a novel paracrine mechanism involving the secretion of miR-132 and inhibition of its target genes.
Circulation | 2010
Paola Campagnolo; Daniela Cesselli; Ayman Al Haj Zen; Antonio Paolo Beltrami; Nicolle Kränkel; Rajesh Katare; Gianni D. Angelini; Costanza Emanueli; Paolo Madeddu
Background— Clinical trials in ischemic patients showed the safety and benefit of autologous bone marrow progenitor cell transplantation. Non–bone marrow progenitor cells with proangiogenic capacities have been described, yet they remain clinically unexploited owing to their scarcity, difficulty of access, and low ex vivo expansibility. We investigated the presence, antigenic profile, expansion capacity, and proangiogenic potential of progenitor cells from the saphenous vein of patients undergoing coronary artery bypass surgery. Methods and Results— CD34-positive cells, negative for the endothelial marker von Willebrand factor, were localized around adventitial vasa vasorum. After dissection of the vein from surrounding tissues and enzymatic digestion, CD34-positive/CD31-negative cells were isolated by selective culture, immunomagnetic beads, or fluorescence-assisted cell sorting. In the presence of serum, CD34-positive/CD31-negative cells gave rise to a highly proliferative population that expressed pericyte/mesenchymal antigens together with the stem cell marker Sox2 and showed clonogenic and multilineage differentiation capacities. We called this population “saphenous vein–derived progenitor cells” (SVPs). In culture, SVPs integrated into networks formed by endothelial cells and supported angiogenesis through paracrine mechanisms. Reciprocally, endothelial cell–released factors facilitated SVP migration. These interactive responses were inhibited by Tie-2 or platelet-derived growth factor-BB blockade. Intramuscular injection of SVPs in ischemic limbs of immunodeficient mice improved neovascularization and blood flow recovery. At 14 days after transplantation, proliferating SVPs were still detectable in the recipient muscles, where they established N-cadherin–mediated physical contact with the capillary endothelium. Conclusions— SVPs generated from human vein CD34-positive/CD31-negative progenitor cells might represent a new therapeutic tool for angiogenic therapy in ischemic patients.
Circulation Research | 2009
Luciola S Barcelos; Cécile Duplàa; Nicolle Kränkel; Gallia Graiani; Gloria Invernici; Rajesh Katare; Mauro Siragusa; Marco Meloni; Ilaria Campesi; Manuela Monica; Andreas Simm; Paola Campagnolo; Giuseppe Mangialardi; Lara Stevanato; Giulio Alessandri; Costanza Emanueli; Paolo Madeddu
We evaluated the healing potential of human fetal aorta–derived CD133+ progenitor cells and their conditioned medium (CD133+ CCM) in a new model of ischemic diabetic ulcer. Streptozotocin-induced diabetic mice underwent bilateral limb ischemia and wounding. One wound was covered with collagen containing 2×104 CD133+ or CD133− cells or vehicle. The contralateral wound, covered with only collagen, served as control. Fetal CD133+ cells expressed high levels of wingless (Wnt) genes, which were downregulated following differentiation into CD133− cells along with upregulation of Wnt antagonists secreted frizzled-related protein (sFRP)-1, -3, and -4. CD133+ cells accelerated wound closure as compared with CD133− or vehicle and promoted angiogenesis through stimulation of endothelial cell proliferation, migration, and survival by paracrine effects. CD133+ cells secreted high levels of vascular endothelial growth factor (VEGF)-A and interleukin (IL)-8. Consistently, CD133+ CCM accelerated wound closure and reparative angiogenesis, with this action abrogated by coadministering the Wnt antagonist sFRP-1 or neutralizing antibodies against VEGF-A or IL-8. In vitro, these effects were recapitulated following exposure of high-glucose-primed human umbilical vein endothelial cells to CD133+ CCM, resulting in stimulation of migration, angiogenesis-like network formation and induction of Wnt expression. The promigratory and proangiogenic effect of CD133+ CCM was blunted by sFRP-1, as well as antibodies against VEGF-A or IL-8. CD133+ cells stimulate wound healing by paracrine mechanisms that activate Wnt signaling pathway in recipients. These preclinical findings open new perspectives for the cure of diabetic ulcers.
Circulation Research | 2008
Nicolle Kränkel; Rajesh Katare; Mauro Siragusa; Luciola S Barcelos; Paola Campagnolo; Giuseppe Mangialardi; Orazio Fortunato; Gaia Spinetti; Nguyen Tran; Kai Zacharowski; Wojciech Wojakowski; Iwona Mroz; Andrew Herman; Jocelyn E. Manning Fox; Patrick E. MacDonald; Joost P. Schanstra; Jean Loup Bascands; Raimondo Ascione; Gianni D. Angelini; Costanza Emanueli; Paolo Madeddu
Reduced migratory function of circulating angiogenic progenitor cells (CPCs) has been associated with impaired neovascularization in patients with cardiovascular disease (CVD). Previous findings underline the role of the kallikrein-kinin system in angiogenesis. We now demonstrate the involvement of the kinin B2 receptor (B2R) in the recruitment of CPCs to sites of ischemia and in their proangiogenic action. In healthy subjects, B2R was abundantly present on CD133+ and CD34+ CPCs as well as cultured endothelial progenitor cells (EPCs) derived from blood mononuclear cells (MNCs), whereas kinin B1 receptor expression was barely detectable. In transwell migration assays, bradykinin (BK) exerts a potent chemoattractant activity on CD133+ and CD34+ CPCs and EPCs via a B2R/phosphoinositide 3-kinase/eNOS-mediated mechanism. Migration toward BK was able to attract an MNC subpopulation enriched in CPCs with in vitro proangiogenic activity, as assessed by Matrigel assay. CPCs from cardiovascular disease patients showed low B2R levels and decreased migratory capacity toward BK. When injected systemically into wild-type mice with unilateral limb ischemia, bone marrow MNCs from syngenic B2R-deficient mice resulted in reduced homing of sca-1+ and cKit+flk1+ progenitors to ischemic muscles, impaired reparative neovascularization, and delayed perfusion recovery as compared with wild-type MNCs. Similarly, blockade of the B2R by systemic administration of icatibant prevented the beneficial effect of bone marrow MNC transplantation. BK-induced migration represents a novel mechanism mediating homing of circulating angiogenic progenitors. Reduction of BK sensitivity in progenitor cells from cardiovascular disease patients might contribute to impaired neovascularization after ischemic complications.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2007
Paolo Madeddu; Nicolle Kraenkel; Luciola S Barcelos; Mauro Siragusa; Paola Campagnolo; Atsuhiko Oikawa; Andrea Caporali; Andrew Herman; Ornella Azzolino; Laura Barberis; Alessia Perino; Federico Damilano; Costanza Emanueli; Emilio Hirsch
Objective—We evaluated whether phosphatidylinositol 3-kinase γ (PI3Kγ) plays a role in reparative neovascularization and endothelial progenitor cell (EPC) function. Methods and Results—Unilateral limb ischemia was induced in mice lacking the PI3Kγ gene (PI3Kγ−/−) or expressing a catalytically inactive mutant (PI3KγKD/KD) and wild-type controls (WT). Capillarization and arteriogenesis were reduced in PI3Kγ−/− ischemic muscles resulting in delayed reperfusion compared with WT, whereas reparative neovascularization was preserved in PI3KγKD/KD. In PI3Kγ−/− muscles, endothelial cell proliferation was reduced, apoptosis was increased, and interstitial space was infiltrated with leukocytes but lacked cKit+ progenitor cells that in WT muscles typically surrounded arterioles. PI3Kγ is constitutively expressed by WT EPCs, with expression levels being upregulated by hypoxia. PI3Kγ−/− EPCs showed a defect in proliferation, survival, integration into endothelial networks, and migration toward SDF-1. The dysfunctional phenotype was associated with nuclear constraining of FOXO1, reduced Akt and eNOS phosphorylation, and decreased nitric oxide (NO) production. Pretreatment with an NO donor corrected the migratory defect of PI3Kγ−/− EPCs. PI3KγKD/KD EPCs showed reduced Akt phosphorylation, but constitutive activation of eNOS and preserved proliferation, survival, and migration. Conclusions—We newly demonstrated that PI3Kγ modulates angiogenesis, arteriogenesis, and vasculogenesis by mechanisms independent from its kinase activity.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2013
Yikuan Chen; Mei Mei Wong; Paola Campagnolo; Russell Simpson; Bernhard Winkler; Andriani Margariti; Yanhua Hu; Qingbo Xu
Objective—This study was designed to carry out the characterization of stem cells within the adventitia and to elucidate their functional role in the pathogenesis of vein graft atherosclerosis. Approach and Results—A mouse vein graft model was used to investigate the functional role of adventitial stem/progenitor cells on atherosclerosis. The adventitia of vein grafts underwent significant remodeling during early stages of vessel grafting and displayed markedly heterogeneous cell compositions. Immunofluorescence staining indicated a significant number of stem cell antigen-1–positive cells that were closely located to vasa vasorum. In vitro clonogenic assays demonstrated 1% to 11% of growing rates from adventitial cell cultures, most of which could be differentiated into smooth muscle cells (SMCs). These stem cell antigen-1–positive cells also displayed a potential to differentiate into adipogenic, osteogenic, or chondrogenic lineages in vitro. In light of the proatherogenic roles of SMCs in atherosclerosis, we focused on the functional roles of progenitor-SMC differentiation, in which we subsequently demonstrated that it was driven by direct interaction of the integrin/collagen IV axis. The ex vivo bioreactor system revealed the migratory capacity of stem cell antigen-1–positive progenitor cells into the vessel wall in response to stromal cell-derived factor-1. Stem cell antigen-1–positive cells that were applied to the outer layer of vein grafts showed enhanced atherosclerosis in apolipoprotein E–deficient mice, which contributed to ≈30% of neointimal SMCs. Conclusions—We demonstrate that during pathological conditions in vein grafting, the adventitia harbors stem/progenitor cells that can actively participate in the pathogenesis of vascular disease via differentiation into SMCs.
Journal of Biological Chemistry | 2014
Elisabetta Di Bernardini; Paola Campagnolo; Andriana Margariti; Anna Zampetaki; Eirini Karamariti; Yanhua Hu; Qingbo Xu
Background: Induced pluripotent stem cells (iPSCs) constitute an attractive source of cells for regenerative medicine. Results: MicroRNA-21 mediates endothelial differentiation derived from iPSCs in presence of VEGF. Conclusion: MicroRNA-21 and TGF-β2 signaling pathways regulate iPSC differentiation to endothelial lineage. Significance: Elucidation of the molecular mechanisms underlying microRNA-21-regulated iPSC differentiation might provide the basic information for stem cell therapy of vascular diseases. Finding a suitable cell source for endothelial cells (ECs) for cardiovascular regeneration is a challenging issue for regenerative medicine. In this paper, we describe a novel mechanism regulating induced pluripotent stem cells (iPSC) differentiation into ECs, with a particular focus on miRNAs and their targets. We first established a protocol using collagen IV and VEGF to drive the functional differentiation of iPSCs into ECs and compared the miRNA signature of differentiated and undifferentiated cells. Among the miRNAs overrepresented in differentiated cells, we focused on microRNA-21 (miR-21) and studied its role in iPSC differentiation. Overexpression of miR-21 in predifferentiated iPSCs induced EC marker up-regulation and in vitro and in vivo capillary formation; accordingly, inhibition of miR-21 produced the opposite effects. Importantly, miR-21 overexpression increased TGF-β2 mRNA and secreted protein level, consistent with the strong up-regulation of TGF-β2 during iPSC differentiation. Indeed, treatment of iPSCs with TGFβ-2 induced EC marker expression and in vitro tube formation. Inhibition of SMAD3, a downstream effector of TGFβ-2, strongly decreased VE-cadherin expression. Furthermore, TGFβ-2 neutralization and knockdown inhibited miR-21-induced EC marker expression. Finally, we confirmed the PTEN/Akt pathway as a direct target of miR-21, and we showed that PTEN knockdown is required for miR-21-mediated endothelial differentiation. In conclusion, we elucidated a novel signaling pathway that promotes the differentiation of iPSC into functional ECs suitable for regenerative medicine applications.
American Journal of Pathology | 2012
Tsung-Neng Tsai; John Paul Kirton; Paola Campagnolo; Li Zhang; Qingzhong Xiao; Zhongyi Zhang; Wen Wang; Yanhua Hu; Qingbo Xu
Artificial vessel grafts are often used for the treatment of occluded blood vessels, but neointimal lesions commonly occur. To both elucidate and quantify which cell types contribute to the developing neointima, we established a novel mouse model of restenosis by grafting a decellularized vessel to the carotid artery. Typically, the graft developed neointimal lesions after 2 weeks, resulting in lumen closure within 4 weeks. Immunohistochemical staining revealed the presence of endothelial and smooth muscle cells, monocytes, and stem/progenitor cells at 2 weeks after implantation. Explanted cultures of neointimal tissues displayed heterogeneous outgrowth in stem cell medium. These lesional cells expressed a panel of stem/progenitor markers, including c-kit, stem cell antigen-1 (Sca-1), and CD34. Furthermore, these cells showed clonogenic and multilineage differentiation capacities. Isolated Sca-1(+) cells were able to differentiate into endothelial and smooth muscle cells in response to vascular endothelial growth factor (VEGF) or platelet-derived growth factor (PDGF)-BB stimulation in vitro. In vivo, local application of VEGF to the adventitial side of the decellularized vessel increased re-endothelialization and reduced neointimal formation in samples at 4 weeks after implantation. A population of stem/progenitor cells exists within developing neointima, which displays the ability to differentiate into both endothelial and smooth muscle cells and can contribute to restenosis. Our findings also indicate that drugs or cytokines that direct cell differentiation toward an endothelial lineage may be effective tools in the prevention or delay of restenosis.
Antioxidants & Redox Signaling | 2011
Paola Campagnolo; Mei Mei Wong; Qingbo Xu
Accumulating evidence indicates that the mobilization and recruitment of circulating or tissue-resident progenitor cells that give rise to endothelial cells (ECs) and smooth muscle cells (SMCs) can participate in atherosclerosis, neointima hyperplasia after arterial injury, and transplant arteriosclerosis. It is believed that endothelial progenitor cells do exist and can repair and rejuvenate the arteries under physiologic conditions; however, they may also contribute to lesion formation by influencing plaque stability in advanced atherosclerotic plaque under specific pathologic conditions. At the same time, smooth muscle progenitors, despite their capacity to expedite lesion formation during restenosis, may serve to promote atherosclerotic plaque stabilization by producing extracellular matrix proteins. This profound evidence provides support to the hypothesis that both endothelial and smooth muscle progenitors may act as a double-edged sword in the pathogenesis of arteriosclerosis. Therefore, the understanding of the regulatory networks that control endothelial and smooth muscle progenitor differentiation is undoubtedly fundamental both for basic research and for improving current therapeutic avenues for atherosclerosis. We update the progress in progenitor cell study related to the development of arteriosclerosis, focusing specifically on the role of progenitor cells in lesion formation and discuss the controversial issues that regard the origins, frequency, and impact of the progenitors in the disease.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2015
Miriam Gubernator; Sadie C. Slater; Helen L Spencer; Inmaculada Spiteri; Andrea Sottoriva; Federica Riu; Jonathan Rowlinson; Elisa Avolio; Rajesh Katare; Giuseppe Mangialardi; Atsuhiko Oikawa; Carlotta Reni; Paola Campagnolo; Gaia Spinetti; Anestis Touloumis; Simon Tavaré; Francesca Prandi; Maurizio Pesce; Manuela Hofner; Vierlinger Klemens; Costanza Emanueli; Gianni D. Angelini; Paolo Madeddu
Objective— We investigated the association between the functional, epigenetic, and expressional profile of human adventitial progenitor cells (APCs) and therapeutic activity in a model of limb ischemia. Approach and Results— Antigenic and functional features were analyzed throughout passaging in 15 saphenous vein (SV)–derived APC lines, of which 10 from SV leftovers of coronary artery bypass graft surgery and 5 from varicose SV removal. Moreover, 5 SV-APC lines were transplanted (8×105 cells, IM) in mice with limb ischemia. Blood flow and capillary and arteriole density were correlated with functional characteristics and DNA methylation/expressional markers of transplanted cells. We report successful expansion of tested lines, which reached the therapeutic target of 30 to 50 million cells in ≈10 weeks. Typical antigenic profile, viability, and migratory and proangiogenic activities were conserved through passaging, with low levels of replicative senescence. In vivo, SV-APC transplantation improved blood flow recovery and revascularization of ischemic limbs. Whole genome screening showed an association between DNA methylation at the promoter or gene body level and microvascular density and to a lesser extent with blood flow recovery. Expressional studies highlighted the implication of an angiogenic network centered on the vascular endothelial growth factor receptor as a predictor of microvascular outcomes. FLT-1 gene silencing in SV-APCs remarkably reduced their ability to form tubes in vitro and support tube formation by human umbilical vein endothelial cells, thus confirming the importance of this signaling in SV-APC angiogenic function. Conclusions— DNA methylation landscape illustrates different therapeutic activities of human APCs. Epigenetic screening may help identify determinants of therapeutic vasculogenesis in ischemic disease.