Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paola Chiarugi is active.

Publication


Featured researches published by Paola Chiarugi.


Journal of Cell Biology | 2003

Reactive oxygen species as essential mediators of cell adhesion: the oxidative inhibition of a FAK tyrosine phosphatase is required for cell adhesion

Paola Chiarugi; Giovambattista Pani; Elisa Giannoni; Letizia Taddei; Renata Colavitti; Giovanni Raugei; Mark Symons; Silvia Borrello; Tommaso Galeotti; Giampietro Ramponi

Signal transduction by reactive oxygen species (ROS; “redox signaling”) has recently come into focus in cellular biology studies. The signaling properties of ROS are largely due to the reversible oxidation of redox-sensitive target proteins, and especially of protein tyrosine phosphatases, whose activity is dependent on the redox state of a low pKa active site cysteine. A variety of mitogenic signals, including those released by receptor tyrosine kinase (RTKs) ligands and oncogenic H-Ras, involve as a critical downstream event the intracellular generation of ROS. Signaling by integrins is also essential for the growth of most cell types and is constantly integrated with growth factor signaling. We provide here evidence that intracellular ROS are generated after integrin engagement and that these oxidant intermediates are necessary for integrin signaling during fibroblast adhesion and spreading. Moreover, we propose a synergistic action of integrins and RTKs for redox signaling. Integrin-induced ROS are required to oxidize/inhibit the low molecular weight phosphotyrosine phosphatase, thereby preventing the enzyme from dephosphorylating and inactivating FAK. Accordingly, FAK phosphorylation and other downstream events, including MAPK phosphorylation, Src phosphorylation, focal adhesion formation, and cell spreading, are all significantly attenuated by inhibition of redox signaling. Hence, we have outlined a redox circuitry whereby, upon cell adhesion, oxidative inhibition of a protein tyrosine phosphatase promotes the phosphorylation/activation and the downstream signaling of FAK and, as a final event, cell adhesion and spreading onto fibronectin.


Cell Communication and Signaling | 2010

Rac and Rho GTPases in cancer cell motility control

Matteo Parri; Paola Chiarugi

Rho GTPases represent a family of small GTP-binding proteins involved in cell cytoskeleton organization, migration, transcription, and proliferation. A common theme of these processes is a dynamic reorganization of actin cytoskeleton which has now emerged as a major switch control mainly carried out by Rho and Rac GTPase subfamilies, playing an acknowledged role in adaptation of cell motility to the microenvironment. Cells exhibit three distinct modes of migration when invading the 3 D environment. Collective motility leads to movement of cohorts of cells which maintain the adherens junctions and move by photolytic degradation of matrix barriers. Single cell mesenchymal-type movement is characterized by an elongated cellular shape and again requires extracellular proteolysis and integrin engagement. In addition it depends on Rac1-mediated cell polarization and lamellipodia formation. Conversely, in amoeboid movement cells have a rounded morphology, the movement is independent from proteases but requires high Rho GTPase to drive elevated levels of actomyosin contractility. These two modes of cell movement are interconvertible and several moving cells, including tumor cells, show an high degree of plasticity in motility styles shifting ad hoc between mesenchymal or amoeboid movements. This review will focus on the role of Rac and Rho small GTPases in cell motility and in the complex relationship driving the reciprocal control between Rac and Rho granting for the opportunistic motile behaviour of aggressive cancer cells. In addition we analyse the role of these GTPases in cancer progression and metastatic dissemination.


Molecular and Cellular Biology | 2005

Intracellular Reactive Oxygen Species Activate Src Tyrosine Kinase during Cell Adhesion and Anchorage-Dependent Cell Growth

Elisa Giannoni; Francesca Buricchi; Giovanni Raugei; Giampietro Ramponi; Paola Chiarugi

ABSTRACT Src tyrosine kinases are central components of adhesive responses and are required for cell spreading onto the extracellular matrix. Among other intracellular messengers elicited by integrin ligation are reactive oxygen species, which act as synergistic mediators of cytoskeleton rearrangement and cell spreading. We report that after integrin ligation, the tyrosine kinase Src is oxidized and activated. Src displays an early activation phase, concurrent with focal adhesion formation and driven mainly by Tyr527 dephosphorylation, and a late phase, concomitant with reactive oxygen species production, cell spreading, and integrin-elicited kinase oxidation. In addition, our results suggest that reactive oxygen species are key mediators of in vitro and in vivo v-Src tumorigenic properties, as both antioxidant treatments and the oxidant-insensitive C245A and C487A Src mutants greatly decrease invasivity, serum-independent and anchorage-independent growth, and tumor onset. Therefore we propose that, in addition to the known phosphorylation/dephosphorylation circuitry, redox regulation of Src activity is required during both cell attachment to the extracellular matrix and tumorigenesis.


Journal of Clinical Investigation | 1998

HNE interacts directly with JNK isoforms in human hepatic stellate cells.

Maurizio Parola; Gaia Robino; Fabio Marra; Massimo Pinzani; Giorgio Bellomo; Gabriella Leonarduzzi; Paola Chiarugi; Simonetta Camandola; Giuseppe Poli; Georg Waeg; Paolo Gentilini; Mario U. Dianzani

4-Hydroxy-2,3-nonenal (HNE) is an aldehydic end product of lipid peroxidation which has been detected in vivo in clinical and experimental conditions of chronic liver damage. HNE has been shown to stimulate procollagen type I gene expression and synthesis in human hepatic stellate cells (hHSC) which are known to play a key role in liver fibrosis. In this study we investigated the molecular mechanisms underlying HNE actions in cultured hHSC. HNE, at doses compatible with those detected in vivo, lead to an early generation of nuclear HNE-protein adducts of 46, 54, and 66 kD, respectively, as revealed by using a monoclonal antibody specific for HNE-histidine adducts. This observation is related to the lack of crucial HNE-metabolizing enzymatic activities in hHSC. Kinetics of appearance of these nuclear adducts suggested translocation of cytosolic proteins. The p46 and p54 isoforms of c-Jun amino-terminal kinase (JNKs) were identified as HNE targets and were activated by this aldehyde. A biphasic increase in AP-1 DNA binding activity, associated with increased mRNA levels of c-jun, was also observed in response to HNE. HNE did not affect the Ras/ERK pathway, c-fos expression, DNA synthesis, or NF-kappaB binding. This study identifies a novel mechanism linking oxidative stress to nuclear signaling in hHSC. This mechanism is not based on redox sensors and is stimulated by concentrations of HNE compatible with those detected in vivo, and thus may be relevant during chronic liver diseases.


Cancer Research | 2010

Reciprocal Activation of Prostate Cancer Cells and Cancer-Associated Fibroblasts Stimulates Epithelial-Mesenchymal Transition and Cancer Stemness

Elisa Giannoni; Francesca Bianchini; L. Masieri; Sergio Serni; Eugenio Torre; Lido Calorini; Paola Chiarugi

Although cancer-associated fibroblasts (CAF) are key determinants in the malignant progression of cancer, their functional contribution to this process is still unclear. Analysis of the mutual interplay between prostate carcinoma cells and CAFs revealed a mandatory role of carcinoma-derived interleukin-6 in fibroblast activation. In turn, activated fibroblasts through secretion of metalloproteinases elicit in cancer cells a clear epithelial-mesenchymal transition (EMT), as well as enhancement of tumor growth and development of spontaneous metastases. CAF-induced EMT leads prostate carcinoma cells to enhance expression of stem cell markers, as well as the ability to form prostaspheres and to self-renew. Hence, the paracrine interplay between CAFs and cancer cells leads to an EMT-driven gain of cancer stem cell properties associated with aggressiveness and metastatic spread.


Trends in Biochemical Sciences | 2003

Redox regulation of protein tyrosine phosphatases during receptor tyrosine kinase signal transduction

Paola Chiarugi; Paolo Cirri

In addition to protein phosphorylation, redox-dependent post-translational modification of proteins is emerging as a key signaling system that has been conserved throughout evolution and that influences many aspects of cellular homeostasis. Both systems exemplify dynamic regulation of protein function by reversible modification, which, in turn, regulates many cellular processes such as cell proliferation, differentiation and apoptosis. In this article we focus on the interplay between phosphorylation- and redox-dependent signaling at the level of phosphotyrosine phosphatase-mediated regulation of receptor tyrosine kinases (RTKs). We propose that signal transduction by oxygen species through reversible phosphotyrosine phosphatase inhibition, represents a widespread and conserved component of the biochemical machinery that is triggered by RTKs.


Cancer and Metastasis Reviews | 2012

Cancer-associated-fibroblasts and tumour cells: a diabolic liaison driving cancer progression

Paolo Cirri; Paola Chiarugi

Several recent papers have now provided compelling experimental evidence that the progression of tumours towards a malignant phenotype does not depend exclusively on the cell-autonomous properties of cancer cells themselves but is also deeply influenced by tumour stroma reactivity, thereby undergoing a strict environmental control. Tumour microenvironmental elements include structural components such as the extracellular matrix or hypoxia as well as stromal cells, either resident cells or recruited from circulating precursors, as macrophages and other inflammatory cells, endothelial cells and cancer-associated fibroblasts (CAFs). All these elements synergistically play a specific role in cancer progression. This review summarizes our current knowledge on the role of CAFs in tumour progression, with a particular focus on the biunivocal interplay between CAFs and cancer cells leading to the activation of the epithelial–mesenchymal transition programme and the achievement of stem cell traits, as well as to the metabolic reprogramming of both stromal and cancer cells. Recent advances on the role of CAFs in the preparation of metastatic niche, as well as the controversial origin of CAFs, are discussed in light of the new emerging therapeutic implications of targeting CAFs.


The Journal of Pathology | 2012

Anoikis: an emerging hallmark in health and diseases†

Maria Letizia Taddei; Elisa Giannoni; Tania Fiaschi; Paola Chiarugi

Anoikis is a programmed cell death occurring upon cell detachment from the correct extracellular matrix, thus disrupting integrin ligation. It is a critical mechanism in preventing dysplastic cell growth or attachment to an inappropriate matrix. Anoikis prevents detached epithelial cells from colonizing elsewhere and is thus essential for tissue homeostasis and development. As anchorage‐independent growth and epithelial–mesenchymal transition, two features associated with anoikis resistance, are crucial steps during tumour progression and metastatic spreading of cancer cells, anoikis deregulation has now evoked particular attention from the scientific community. The aim of this review is to analyse the molecular mechanisms governing both anoikis and anoikis resistance, focusing on their regulation in physiological processes, as well as in several diseases, including metastatic cancers, cardiovascular diseases and diabetes. Copyright


Cancer and Metastasis Reviews | 2010

Metastasis: cancer cell's escape from oxidative stress.

Giovambattista Pani; Tommaso Galeotti; Paola Chiarugi

According to a “canonical” view, reactive oxygen species (ROS) positively contribute, in different ways, to carcinogenesis and to malignant progression of tumor cells: they drive genomic damage and genetic instability, transduce, as signaling intermediates, mitogenic and survival inputs by growth factor receptors and adhesion molecules, promote cell motility and shape the tumor microenvironment by inducing inflammation/repair and angiogenesis. Chemopreventive and tumor-inhibitory effects of endogenous, diet-derived or supplemented antioxidants largely support this notion. However, emerging lines of evidence indicates that tumor cells also need to defend themselves from oxidative damage in order to survive and successfully spread at distance. This “heresy” has recently received important impulse from studies on the role of antioxidant capacity in cancer stem cells self-renewal and resistance to therapy; additionally, the transforming activity of some oncogenes has been unexpectedly linked to their capacity to maintain elevated intracellular levels of reduced glutathione (GSH), the principal redox buffer. These studies underline the importance of cellular antioxidant capacity in metastasis, as the result of a complex cell program involving enhanced motility and a profound change in energy metabolism. The glycolytic switch (Warburg effect) observed in malignant tissues is triggered by mitochondrial oxidative damage and/or activation of redox-sensitive transcription factors, and results in an increase of cell resistance to oxidants. On the other hand, cytoskeleton rearrangement underlying cell motile and tumor-aggressive behavior use ROS as intermediates and are therefore facilitated by oxidative stress. Along this line of speculation, we suggest that metastasis represents an integrated strategy for cancer cells to avoid oxidative damage and escape excess ROS in the primary tumor site, explaning why redox signaling pathways are often up-regulated in malignancy and metastasis.


Cancer Research | 2012

RECIPROCAL METABOLIC REPROGRAMMING THROUGH LACTATE SHUTTLE COORDINATELY INFLUENCES TUMOR-STROMA INTERPLAY

Tania Fiaschi; Alberto Marini; Elisa Giannoni; Maria Letizia Taddei; Paolo Gandellini; Alina De Donatis; Michele Lanciotti; Sergio Serni; Paolo Cirri; Paola Chiarugi

Cancer-associated fibroblasts (CAF) engage in tumor progression by promoting the ability of cancer cells to undergo epithelial-mesenchymal transition (EMT), and also by enhancing stem cells traits and metastatic dissemination. Here we show that the reciprocal interplay between CAFs and prostate cancer cells goes beyond the engagement of EMT to include mutual metabolic reprogramming. Gene expression analysis of CAFs cultured ex vivo or human prostate fibroblasts obtained from benign prostate hyperplasia revealed that CAFs undergo Warburg metabolism and mitochondrial oxidative stress. This metabolic reprogramming toward a Warburg phenotype occurred as a result of contact with prostate cancer cells. Intercellular contact activated the stromal fibroblasts, triggering increased expression of glucose transporter GLUT1, lactate production, and extrusion of lactate by de novo expressed monocarboxylate transporter-4 (MCT4). Conversely, prostate cancer cells, upon contact with CAFs, were reprogrammed toward aerobic metabolism, with a decrease in GLUT1 expression and an increase in lactate upload via the lactate transporter MCT1. Metabolic reprogramming of both stromal and cancer cells was under strict control of the hypoxia-inducible factor 1 (HIF1), which drove redox- and SIRT3-dependent stabilization of HIF1 in normoxic conditions. Prostate cancer cells gradually became independent of glucose consumption, while developing a dependence on lactate upload to drive anabolic pathways and thereby cell growth. In agreement, pharmacologic inhibition of MCT1-mediated lactate upload dramatically affected prostate cancer cell survival and tumor outgrowth. Hence, cancer cells allocate Warburg metabolism to their corrupted CAFs, exploiting their byproducts to grow in a low glucose environment, symbiotically adapting with stromal cells to glucose availability.

Collaboration


Dive into the Paola Chiarugi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paolo Cirri

University of Florence

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge