Paola Conti
University of Milan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paola Conti.
Journal of Medicinal Chemistry | 2011
Sabrina Castellano; Dirk Kuck; Monica Viviano; Jakyung Yoo; Paola Conti; Lucia Tamborini; Andrea Pinto; José L. Medina-Franco; Gianluca Sbardella
A series of Δ(2)-isoxazoline constrained analogues of procaine/procainamide (7a-k and 8a-k) were prepared and their inhibitory activity against DNA methyltransferase 1 (DNMT1) was tested. Among them, derivative 7b is far more potent in vitro (IC(50) = 150 μM) than other non-nucleoside inhibitors and also exhibits a strong and dose-dependent antiproliferative effect against HCT116 human colon carcinoma cells. The binding mode of 7b with the enzyme was also investigated by means of a simple competition assay as well as of docking simulations conducted using the recently published crystallographic structure of human DNMT1. On the basis of the findings, we assessed that the mode of inhibition of 7b is consistent with a competition with the cofactor and propose it as a novel lead compound for the development of non-nucleoside DNMT inhibitors.
Bioorganic & Medicinal Chemistry | 1998
Paola Conti; Clelia Dallanoce; Marco De Amici; Carlo De Micheli; Karl-Norbert Klotz
Abstract A series of Δ 2 -isoxazoline derivatives structurally related to Broxaterol 1 and Falintolol 3 has been prepared and evaluated for their binding affinity to β 1 - and β 2 -adrenergic receptors. Among the tested compounds only the 3-isopropenyl anti derivative 4d is as active as the reference compounds. An electron-releasing group, probably operating through a π – π interaction, in the 3-position of the isoxazoline nucleus greatly enhances the affinity of the compounds. Conversely, the closest analogs of Broxaterol (3-bromo Δ 2 -isoxazolines 4a and 5a ) are at least one order of magnitude less active than the model compound 1 . Throughout the series of derivatives the anti stereoisomers are invariably more active than their syn counterparts.
Chemical Reviews | 2011
Paola Conti; Lucia Tamborini; Andrea Pinto; Arnaud Blondel; Paola Minoprio; Andrea Mozzarelli; Carlo De Micheli
Drug Discovery Targeting Amino Acid Racemases Paola Conti, Lucia Tamborini, Andrea Pinto, Arnaud Blondel, Paola Minoprio, Andrea Mozzarelli, and Carlo De Micheli* Dipartimento di Scienze Farmaceutiche “P. Pratesi”, via Mangiagalli 25, 20133 Milano, Italy Institut Pasteur, Unit e de Bioinformatique Structurale, CNRS-URA 2185, D epartement de Biologie Structurale et Chimie, 25 rue du Dr. Roux, 75724 Paris, France Institut Pasteur, Laboratoire des Processus Infectieux a Trypanosoma; D epartement d’Infection et Epid emiologie; 25 rue du Dr. Roux, 75724 Paris, France Dipartimento di Biochimica e Biologia Molecolare, via G. P. Usberti 23/A, 43100 Parma, Italy Istituto di Biostrutture e Biosistemi, viale Medaglie d’oro, Roma, Italy
Journal of Medicinal Chemistry | 2013
Roberta Ettari; Lucia Tamborini; Ilenia C. Angelo; Nicola Micale; Andrea Pinto; Carlo De Micheli; Paola Conti
Rhodesain, a cathepsin L-like cysteine protease of T. brucei rhodesiense, is considered a potential target for the treatment of human African trypanosomiasis. Recent findings have confirmed that rhodesain, a lysosomal protease, is essential for parasite survival. Rhodesain is required by T. brucei to cross the blood-brain barrier, degrade host immunoglobulins, and turn over variant surface coat glycoproteins of T. brucei, which impair effective host immune responses. In this Perspective, we discuss the main classes of rhodesain inhibitors, including peptidic, peptidomimetic, and nonpeptidic structures, emphasizing those that have exhibited an optimal match between enzymatic affinity and trypanocidal profile and those for which preclinical investigations are currently in progress.
Journal of Biological Chemistry | 2011
Eliana S. Di Cairano; Alberto M. Davalli; Lucia Perego; Silvia Sala; V. Franca Sacchi; Stefano La Rosa; Giovanna Finzi; Claudia Placidi; Carlo Capella; Paola Conti; Victoria E. Centonze; Francesca Casiraghi; Federico Bertuzzi; Franco Folli; Carla Perego
Glutamate is the major excitatory neurotransmitter of the central nervous system (CNS) and may induce cytotoxicity through persistent activation of glutamate receptors and oxidative stress. Its extracellular concentration is maintained at physiological concentrations by high affinity glutamate transporters of the solute carrier 1 family (SLC1). Glutamate is also present in islet of Langerhans where it is secreted by the α-cells and acts as a signaling molecule to modulate hormone secretion. Whether glutamate plays a role in islet cell viability is presently unknown. We demonstrate that chronic exposure to glutamate exerts a cytotoxic effect in clonal β-cell lines and human islet β-cells but not in α-cells. In human islets, glutamate-induced β-cell cytotoxicity was associated with increased oxidative stress and led to apoptosis and autophagy. We also provide evidence that the key regulator of extracellular islet glutamate concentration is the glial glutamate transporter 1 (GLT1). GLT1 localizes to the plasma membrane of β-cells, modulates hormone secretion, and prevents glutamate-induced cytotoxicity as shown by the fact that its down-regulation induced β-cell death, whereas GLT1 up-regulation promoted β-cell survival. In conclusion, the present study identifies GLT1 as a new player in glutamate homeostasis and signaling in the islet of Langerhans and demonstrates that β-cells critically depend on its activity to control extracellular glutamate levels and cellular integrity.
Bioorganic & Medicinal Chemistry | 1999
Clelia Dallanoce; Paola Conti; Marco De Amici; Carlo De Micheli; Elisabetta Barocelli; M. Chiavarini; Vigilio Ballabeni; Simona Bertoni; M. Impicciatore
Two subseries of nonquaternized (5a-10a) and quaternized derivatives (5b-10b) related to oxotremorine and oxotremorine-M were synthesized and tested. The agonist potency at the muscarinic receptor subtypes of the new compounds was estimated in three classical in vitro functional assays: M1 rabbit vas deferens, M2 guinea pig left atrium and M3 guinea pig ileum. In addition, the occurrence of central muscarinic effects was evaluated as tremorigenic activity after intraperitoneal administration in mice. In in vitro tests a nonselective muscarinic activity was exhibited by all the derivatives with potencies values that, in some instances, surpassed those of the reference compounds (i.e. 8b). Functional selectivity was evidenced only for the oxotremorine-like derivative 9a, which behaved as a mixed M3-agonist/M1-antagonist (pD2 = 5.85; pA2 = 4.76, respectively). In in vivo tests non-quaternary compounds were able to evoke central muscarinic effects, with a potency order parallel to that observed in vitro.
ChemMedChem | 2011
Paola Conti; Andrea Pinto; Pui E. Wong; Louise L. Major; Lucia Tamborini; Maria C. Iannuzzi; Carlo De Micheli; Michael P. Barrett; Terry K. Smith
The first convenient synthesis of enantiomerically pure (αS,5S)‐α‐amino‐3‐bromo‐4,5‐dihydroisoxazol‐5‐yl acetic acid (3‐bromoacivicin) is described. We demonstrate that 3‐bromoacivicin is a CTP synthetase inhibitor three times as potent as its 3‐chloro analogue, the natural antibiotic acivicin. Because CTP synthetase was suggested to be a potential drug target in African trypanosomes, the in vitro/in vivo antitrypanosomal activity of 3‐bromoacivicin was assessed in comparison with acivicin. Beyond expectation, we observed a 12‐fold enhancement in the in vitro antitrypanosomal activity, while toxicity against mammalian cells remained unaffected. Despite its good in vitro activity and selectivity, 3‐bromoacivicin proved to be trypanostatic and failed to completely eradicate the infection when tested in vivo at its maximum tolerable dose.
ChemMedChem | 2012
Lucia Tamborini; Andrea Pinto; Terry K. Smith; Louise L. Major; Maria C. Iannuzzi; Sandro Cosconati; Luciana Marinelli; Ettore Novellino; Leonardo Lo Presti; Pui E. Wong; Michael P. Barrett; Carlo De Micheli; Paola Conti
Acivicin analogues with an increased affinity for CTP synthetase (CTPS) were designed as potential new trypanocidal agents. The inhibitory activity against CTPS can be improved by increasing molecular complexity, by inserting groups able to establish additional interactions with the binding pocket of the enzyme. This strategy has been pursued with the synthesis of α‐amino‐substituted analogues of Acivicin and N1‐substituted pyrazoline derivatives. In general, there is direct correlation between the enzymatic activity and the in vitro anti‐trypanosomal efficacy of the derivatives studied here. However, this cannot be taken as a general rule, as other important factors may play a role, notably the ability of uptake/diffusion of the molecules into the trypanosomes.
Journal of Organic Chemistry | 2010
Sabrina Castellano; Lucia Tamborini; Monica Viviano; Andrea Pinto; Gianluca Sbardella; Paola Conti
Two modern synthetic technologies to perform 1,3-dipolar cycloaddition reactions were compared. This study puts in evidence the power of microwave-assisted and flow-based methodologies compared to the conventional one in terms of reaction time and yield, and demonstrates the potential of flow chemistry in terms of time, automation, and scaling up opportunities.
European Journal of Medicinal Chemistry | 2010
Paola Conti; Lucia Tamborini; Andrea Pinto; Laura Sola; Roberta Ettari; Ciro Mercurio; Carlo De Micheli
A series of isoxazole-based histone deacetylase (HDAC) inhibitors structurally related to SAHA were designed and synthesized. The isoxazole moiety was inserted in the vicinity of the Zn(2+)-binding group in order to check its participation in the coordinating process.