Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paola Corona is active.

Publication


Featured researches published by Paola Corona.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Discovery of potent pteridine reductase inhibitors to guide antiparasite drug development

Antonio Cavazzuti; Giuseppe Paglietti; William N. Hunter; Francisco Gamarro; Sandra Piras; Mario Loriga; Sergio Allecca; Paola Corona; Karen McLuskey; Lindsay B. Tulloch; Federica Gibellini; Stefania Ferrari; Maria Paola Costi

Pteridine reductase (PTR1) is essential for salvage of pterins by parasitic trypanosomatids and is a target for the development of improved therapies. To identify inhibitors of Leishmania major and Trypanosoma cruzi PTR1, we combined a rapid-screening strategy using a folate-based library with structure-based design. Assays were carried out against folate-dependent enzymes including PTR1, dihydrofolate reductase (DHFR), and thymidylate synthase. Affinity profiling determined selectivity and specificity of a series of quinoxaline and 2,4-diaminopteridine derivatives, and nine compounds showed greater activity against parasite enzymes compared with human enzymes. Compound 6a displayed a Ki of 100 nM toward LmPTR1, and the crystal structure of the LmPTR1:NADPH:6a ternary complex revealed a substrate-like binding mode distinct from that previously observed for similar compounds. A second round of design, synthesis, and assay produced a compound (6b) with a significantly improved Ki (37 nM) against LmPTR1, and the structure of this complex was also determined. Biological evaluation of selected inhibitors was performed against the extracellular forms of T. cruzi and L. major, both wild-type and overexpressing PTR1 lines, as a model for PTR1-driven antifolate drug resistance and the intracellular form of T. cruzi. An additive profile was observed when PTR1 inhibitors were used in combination with known DHFR inhibitors, and a reduction in toxicity of treatment was observed with respect to administration of a DHFR inhibitor alone. The successful combination of antifolates targeting two enzymes indicates high potential for such an approach in the development of previously undescribed antiparasitic drugs.


European Journal of Medicinal Chemistry | 2009

Synthesis and in vitro antitumor activity of new quinoxaline derivatives

Paola Corona; Antonio Carta; Mario Loriga; Gabriella Vitale; Giuseppe Paglietti

A series of novel 5,7-diamino-3-phenyl-2-benzylamino, 2-phenoxy, and 2-thiophenyl substituted quinoxalines has been designed, synthesized and evaluated for their in vitro antitumor activity towards cell lines of nine different types of human cancers. Some of these compounds exhibited inhibitory effects on the growth of a wide range of cancer cell lines generally at 10(-6) M, in some cases at 10(-7) M and 10(-8) M concentrations. Within this series the benzylamino quinoxaline derivatives 1b-7b were the most active, whereas compound 2c showed the highest MG_MD value (-5.66).


Bioorganic & Medicinal Chemistry | 2011

Quinoline tricyclic derivatives. Design, synthesis and evaluation of the antiviral activity of three new classes of RNA-dependent RNA polymerase inhibitors

Antonio Carta; Irene Briguglio; Sandra Piras; Paola Corona; Giampiero Boatto; Maria Nieddu; Paolo Giunchedi; Maria Elena Marongiu; Gabriele Giliberti; Filippo Iuliano; Sylvain Blois; Cristina Ibba; Bernardetta Busonera; Paolo La Colla

In this study three new classes of linear N-tricyclic compounds, derived by condensation of the quinoline nucleus with 1,2,3-triazole, imidazole or pyrazine, were synthesized, obtaining triazolo[4,5-g]quinolines, imidazo[4,5-g]quinolines and pyrido[2,3-g]quinoxalines, respectively. Title compounds were tested in cell-based assays for cytotoxicity and antiviral activity against RNA viruses representative of the three genera of the Flaviviridae family, that is BVDV (Pestivirus), YFV (Flavivirus) and HCV (Hepacivirus). Quinoline derivatives were also tested against representatives of other RNA virus families containing single-stranded, either positive-sense (ssRNA(+)) or negative-sense (RNA(-)), and double-stranded genomes (dsRNA), as well as against representatives of two DNA virus families. Some quinolines showed moderate, although selective activity against CVB-5, Reo-1 and RSV. However, derivatives belonging to all classes showed activity against BVDV. Among the most potent were the bis-triazoloquinoline 1m, the imidazoquinolines 2e and 2h, and the pyridoquinoxalines 4h, 4j and 5n (EC(50) range 1-5 μM). When tested in a replicon assay, compound 2h was the sole derivative to also display anti-HCV activity (EC(50)=3.1 μM). In enzyme assays, 1m, 2h, 5m and 5n proved to be potent inhibitors of the BVDV RNA-dependent RNA polymerase (RdRp), while only 2h also inhibited the recombinant HCV enzyme.


Farmaco | 2003

Quinoxaline chemistry. Part 16. 4-Substituted anilino and 4-substituted phenoxymethyl pyrrolo[1,2-a]quinoxalines and N-[4-(pyrrolo[1,2-a]quinoxalin-4-yl)amino and hydroxymethyl]benzoyl glutamates. Synthesis and evaluation of in vitro biological activity

Sergio Alleca; Paola Corona; Mario Loriga; Giuseppe Paglietti; Roberta Loddo; Bernardetta Busonera; Paolo La Colla

Twenty eight pyrrolo[1,2-a]quinoxalines bearing at position 4 various substituents related to the moieties present in classical and non classical antifolic agents were prepared and evaluated in vitro for antiproliferative activity. In an in vitro screening performed at NCI, several compounds emerged as potent antiproliferative agents at concentrations ranging between 10 and 100 microM. Interestingly, some of these compounds proved active also against bovine and murine DHFR (Farmaco 53 (1998) 480). More recently, a compound of classical antifolate type has been reported to be a potent inhibitor of hDHFR in vitro (Farmaco 58 (2003) 51). We then synthesized new derivatives that, in our hands, were endowed with in vitro antiproliferative activities as low as 3.4 microM against a panel of cell lines derived from hematological and solid tumours. In addition, a complete screening of cytotoxicity, antiretroviral HIV-1 and antimicrobial activity has been carried out.


Farmaco | 2000

Quinoxaline chemistry: Part 13: 3-carboxy-2-benzylamino-substituted quinoxalines and N -[4-[(3-carboxyquinoxalin-2-yl) aminomethyl]benzoyl]- L -glutamates: synthesis and evaluation of in vitro anticancer activity

Paola Corona; Gabriella Vitale; Mario Loriga; Giuseppe Paglietti

Among a new series of 28 3-carboxy or carbethoxy quinoxalines bearing a substituted benzylamino or N-[4-(aminomethyl)benzoyl]glutamate group on position 2 of the ring and various substituents at C-6, 7 positions, 21 were selected at the National Cancer Institute for evaluation of their in vitro anticancer activity. The results obtained seem to confirm that the carboxy or carbethoxy group on position 3 is not helpful, with a few exceptions, for the anticancer activity.


Farmaco | 1998

Quinoxaline chemistry. Part 11. 3-Phenyl-2[phenoxy- and phenoxymethyl]-6(7) or 6,8-substituted quinoxalines and N-[4-(6(7)-substituted or 6,8-disubstituted-3-phenylquinoxalin-2-yl)hydroxy or hydroxymethyl] benzoylglutamates. Synthesis and evaluation of in vitro anticancer activity and enzymatic inhibitory activity against dihydrofolate reductase and thymidylate synthase.

Paola Corona; Gabriella Vitale; Mario Loriga; Giuseppe Paglietti; Maria Paola Costi

Twenty-four out of twenty-nine quinoxalines were selected at the National Cancer Institute, Bethesda, Md, USA, for in vitro anticancer screening. Among these, 10 derivatives exhibited high values of percent tumor growth inhibition at a concentration of 10(-4) M in all cancer cell lines. Four of these compounds maintained these values at 10(-5) M, whereas a certain number exhibited significant values of percent inhibition at the most diluted concentrations (10(-8)-10(-6) M). Inhibitory activity against dihydrofolate reductase (DHFR) (bovine and rat liver) was determined for the most active compounds. This test showed that this type of quinoxaline exhibited an appreciable activity in comparison with the previously described aza analogues. In the other test (Lactobacillus casei, thymidylate synthase (TS), human HTS) no or poor activity was detected in both series of compounds.


Journal of Medicinal Chemistry | 2012

Structure-Based Selectivity Optimization of Piperidine–Pteridine Derivatives as Potent Leishmania Pteridine Reductase Inhibitors

Paola Corona; Federica Gibellini; Andrea Cavalli; Puneet Saxena; Antonio Carta; Mario Loriga; Rosaria Luciani; Giuseppe Paglietti; Davide Guerrieri; Erika Nerini; Shreedhara Gupta; Véronique Hannaert; Paul A. M. Michels; Stefania Ferrari; Paola M. Costi

The upregulation of pteridine reductase (PTR1) is a major contributor to antifolate drug resistance in Leishmania spp., as it provides a salvage pathway that bypasses dihydrofolate reductase (DHFR) inhibition. The structure-based optimization of the PTR1 inhibitor methyl-1-[4-(2,4-diaminopteridin-6-ylmethylamino)benzoyl]piperidine-4-carboxylate (1) led to the synthesis of a focused compound library which showed significantly improved selectivity for the parasites folate-dependent enzyme. When used in combination with pyrimethamine, a DHFR inhibitor, a synergistic effect was observed for compound 5b. This work represents a step forward in the identification of effective antileishmania agents.


European Journal of Pharmacology | 2009

Collateral sensitivity to novel thymidylate synthase inhibitors correlates with folate cycle enzymes impairment in cisplatin-resistant human ovarian cancer cells

Gaetano Marverti; Alessio Ligabue; Giuseppe Paglietti; Paola Corona; Sandra Piras; Gabriella Vitale; Davide Guerrieri; Rosaria Luciani; Maria Paola Costi; Chiara Frassineti; Maria Stella Moruzzi

The cytotoxicity of two novel folate cycle inhibitors with quinoxalinic structure, 3-methyl-7-trifluoromethyl-2(R)-[3,4,5-trimethoxyanilino]-quinoxaline (453R) and 3-piperazinilmethyl-2[4(oxymethyl)-phenoxy]quinoxaline (311S), was tested against a panel of both cisplatin(cDDP)-sensitive and -resistant carcinoma cell lines. Interestingly, the cisplatin-resistant human ovarian line, C13 cells, exhibited collateral sensitivity towards the two compounds when compared to its sensitive parental 2008 cells. In this resistant line, which showed elevated expression of the folate cycle enzymes, thymidylate synthase (TS) and dihydrofolate reductase (DHFR), due to cisplatin-resistance phenotype, collateral sensitivity correlated with the greater reduction of enzyme expression. In addition, TS and DHFR expression of the other resistant lines, the human ovarian carcinoma A2780/CP cells and the human breast cancer MDA/CH cells, were decreased in accordance with the similar sensitivity or the low level of cross-resistance to these compounds in comparison to their respective parental lines. Noteworthy, unlike 5-fluorouracil, both drugs reduced the level of TS without inducing ternary complex formation with the co-substrate and the nucleotide analogue. Median effect analysis of the interactive effects of cisplatin with the two quinoxalines mainly showed additive or synergistic cell killing, depending on schedules of drug combinations. In particular, synergistic effects were more often obtained, even on the resistant cells, when cisplatin was added at the beginning of the treatment. These results indicate that, despite the possibility of other mechanisms being involved, inhibition of TS cycle enzymes plays an important role in the pharmacology of these compounds, which might also represent a useful component in drug treatment protocols against cDDP-resistant cells.


Farmaco | 1998

Quinoxaline chemistry: Part 10: Quinoxaline 10-oxa-analogues of trimetrexate (TMQ ) and of 5,8-dideazafolic acid: synthesis and evaluation of in vitro anticancer activity

Gabriella Vitale; Paola Corona; Mario Loriga; Giuseppe Paglietti

Among twenty-eight novel compounds (twenty-two 2,3-disubstituted-6-[(substituted-phenoxy)methyl-quinoxalines and six 4-[(2,3-disubstituted-quinoxalin-6-yl)methoxy]benzoylglutamates ) only thirteen were selected at NCI for evaluation of their in vitro anticancer activity. The results have shown that compounds 3l,c,b,e and 4b were endowed with significantly high values of percent tumor growth inhibition on several tumor cell lines at 10(-4) M, while compound 3t was characterized by a high selectivity, being still strongly inhibiting on three cell lines at 10(-5) M. Comparison of the presently observed activity with that of the previously described aza-analogues confirms that the effected isosteric substitution is highly valuable in some cases.


European Journal of Medicinal Chemistry | 2011

Synthesis and anti-mycobacterial activities of triazoloquinolones

Antonio Carta; Michele Francesco Luigi Palomba; Irene Briguglio; Paola Corona; Sandra Piras; Daniela Jabes; Paola Guglierame; Paola Molicotti; Stefania Anna Lucia Zanetti

A number of quinolone derivatives have been reported to possess anti-mycobacterial activity. Generally. Mycobacterium tuberculosis isolates expressing resistance to both isoniazid and rifampin are susceptible to fluoroquinolones. Benzotriazole is a hetero-bicyclic aromatic ring endowed with interesting chemical and biological properties and pharmacological activities. In a preliminary study we have recently reported the activity of triazolo[4,5-h]quinolone-carboxylic acids, a new class of benzotriazole derivatives active against multi-drug resistant M. tuberculosis (MDR-Mtb). In this study we confirm that this novel class of quinolones is endowed with a selective anti-mycobacterial activity, coupled with absence of cytotoxicity. The SAR analysis of the new derivatives in comparison with the previous series shows that the methyl group is the most effective substituent in both N-3 and N-9 positions of the ring system.

Collaboration


Dive into the Paola Corona's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge